Abstract

Relative timing jitter between synchronized Q-switched lasers, or lack thereof, is important for stable sum-frequency generation. Experimental investigation of two passively synchronized lasers shows that the jitter is minimized when the free-running repetition rates of the two lasers are close to, but not exactly, matching. When the free-running repetition rates are matched, the jitter is significantly large. At the best operating point, the pulse-to-pulse period was 200μs, while the relative jitter between the two lasers was 9ns. If the effect of the master laser’s pulse-to-pulse jitter is removed, the residual timing jitter between the two lasers was 6ns, which corresponds to the lower limit set by pump power fluctuations and noise from spontaneous emission.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Khurgin, F. Jin, G. Solyar, C. C. Wang, and S. Trivedi, Appl. Opt. 41, 1095 (2002).
    [CrossRef] [PubMed]
  2. S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, Jpn. J. Appl. Phys. 38, L239 (1999).
    [CrossRef]
  3. X. Wang and Z. Xu, Appl. Opt. 45, 8477 (2006).
    [CrossRef] [PubMed]
  4. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, Opt. Express 17, 1766 (2009).
    [CrossRef] [PubMed]
  5. A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, Opt. Lett. 35, 2885 (2010).
    [CrossRef] [PubMed]
  6. R. W. Farley and P. D. Dao, Appl. Opt. 34, 4269 (1995).
    [CrossRef] [PubMed]
  7. E. Herault, M. Lelek, F. Balembois, and P. Georges, Opt. Express 16, 19419 (2008).
    [CrossRef] [PubMed]
  8. L. Zhang, Z. Wei, B. Feng, D. Li, and Z. Zhang, Opt. Commun. 264, 51 (2006).
    [CrossRef]
  9. P. Tidemand-Lichtenberg, J. Janousek, R. Melich, J. L. Mortensen, and P. Buchhave, Opt. Commun. 241, 487(2004).
    [CrossRef]
  10. J. Janousek, P. Tidemand-Lichtenberg, J. L. Mortensen, and P. Buchhave, Opt. Commun. 265, 277 (2006).
    [CrossRef]
  11. H. P.H. Cheng, P. Tidemand-Lichtenberg, O. B. Jensen, P. E. Andersen, P. M. Petersen, and C. Pedersen, Opt. Express 18, 23987 (2010).
    [CrossRef] [PubMed]
  12. T. Y. Tsai, Y. C. Fang, H. M. Huang, H. X. Tsao, and S. T. Lin, Opt. Express 18, 23523 (2010).
    [CrossRef] [PubMed]

2010 (3)

2009 (1)

2008 (1)

2006 (3)

L. Zhang, Z. Wei, B. Feng, D. Li, and Z. Zhang, Opt. Commun. 264, 51 (2006).
[CrossRef]

X. Wang and Z. Xu, Appl. Opt. 45, 8477 (2006).
[CrossRef] [PubMed]

J. Janousek, P. Tidemand-Lichtenberg, J. L. Mortensen, and P. Buchhave, Opt. Commun. 265, 277 (2006).
[CrossRef]

2004 (1)

P. Tidemand-Lichtenberg, J. Janousek, R. Melich, J. L. Mortensen, and P. Buchhave, Opt. Commun. 241, 487(2004).
[CrossRef]

2002 (1)

1999 (1)

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, Jpn. J. Appl. Phys. 38, L239 (1999).
[CrossRef]

1995 (1)

Andersen, P. E.

Balembois, F.

Buchhave, P.

J. Janousek, P. Tidemand-Lichtenberg, J. L. Mortensen, and P. Buchhave, Opt. Commun. 265, 277 (2006).
[CrossRef]

P. Tidemand-Lichtenberg, J. Janousek, R. Melich, J. L. Mortensen, and P. Buchhave, Opt. Commun. 241, 487(2004).
[CrossRef]

Cheng, H. P.H.

Cole, B.

Dao, P. D.

Fang, Y. C.

Farley, R. W.

Feng, B.

L. Zhang, Z. Wei, B. Feng, D. Li, and Z. Zhang, Opt. Commun. 264, 51 (2006).
[CrossRef]

Georges, P.

Goldberg, L.

Hays, A.

Herault, E.

Huang, H. M.

Huang, S. L.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, Jpn. J. Appl. Phys. 38, L239 (1999).
[CrossRef]

Janousek, J.

J. Janousek, P. Tidemand-Lichtenberg, J. L. Mortensen, and P. Buchhave, Opt. Commun. 265, 277 (2006).
[CrossRef]

P. Tidemand-Lichtenberg, J. Janousek, R. Melich, J. L. Mortensen, and P. Buchhave, Opt. Commun. 241, 487(2004).
[CrossRef]

Jensen, O. B.

Jin, F.

Kao, F. J.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, Jpn. J. Appl. Phys. 38, L239 (1999).
[CrossRef]

Khurgin, J. B.

Lelek, M.

Li, D.

L. Zhang, Z. Wei, B. Feng, D. Li, and Z. Zhang, Opt. Commun. 264, 51 (2006).
[CrossRef]

Limpert, J.

Lin, S. T.

Martin, A.

McIntosh, C.

Melich, R.

P. Tidemand-Lichtenberg, J. Janousek, R. Melich, J. L. Mortensen, and P. Buchhave, Opt. Commun. 241, 487(2004).
[CrossRef]

Mortensen, J. L.

J. Janousek, P. Tidemand-Lichtenberg, J. L. Mortensen, and P. Buchhave, Opt. Commun. 265, 277 (2006).
[CrossRef]

P. Tidemand-Lichtenberg, J. Janousek, R. Melich, J. L. Mortensen, and P. Buchhave, Opt. Commun. 241, 487(2004).
[CrossRef]

Nodop, D.

Pedersen, C.

Petersen, P. M.

Schilling, B. W.

Solyar, G.

Steinmetz, A.

Tidemand-Lichtenberg, P.

H. P.H. Cheng, P. Tidemand-Lichtenberg, O. B. Jensen, P. E. Andersen, P. M. Petersen, and C. Pedersen, Opt. Express 18, 23987 (2010).
[CrossRef] [PubMed]

J. Janousek, P. Tidemand-Lichtenberg, J. L. Mortensen, and P. Buchhave, Opt. Commun. 265, 277 (2006).
[CrossRef]

P. Tidemand-Lichtenberg, J. Janousek, R. Melich, J. L. Mortensen, and P. Buchhave, Opt. Commun. 241, 487(2004).
[CrossRef]

Trivedi, S.

Trussell, C. W.

Tsai, T. Y.

Tsao, H. X.

Tsui, T. Y.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, Jpn. J. Appl. Phys. 38, L239 (1999).
[CrossRef]

Tünnermann, A.

Wang, C. C.

Wang, C. H.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, Jpn. J. Appl. Phys. 38, L239 (1999).
[CrossRef]

Wang, X.

Wei, Z.

L. Zhang, Z. Wei, B. Feng, D. Li, and Z. Zhang, Opt. Commun. 264, 51 (2006).
[CrossRef]

Xu, Z.

Zhang, L.

L. Zhang, Z. Wei, B. Feng, D. Li, and Z. Zhang, Opt. Commun. 264, 51 (2006).
[CrossRef]

Zhang, Z.

L. Zhang, Z. Wei, B. Feng, D. Li, and Z. Zhang, Opt. Commun. 264, 51 (2006).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (173 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for synchronized Q switching. Nd:YAG1 and Nd:YAG2 are the laser crystals for 946 nm and 1064 nm , respectively. SA is the saturable absorber that is shared between the two lasers. The 946 and 1064 nm laser cavity lengths are 37 and 19 cm , respectively.

Fig. 2
Fig. 2

(a) Delay and (b) timing jitter of the 946 and 1064 nm pulses relative to each other as a function of the 1064 nm laser pump power, with the 946 nm laser incident pump power held fixed at 1.6 W . A negative delay indicates that the 1064 nm pulses were lagging the 946 nm pulses. (c) Single frame from the uploaded video (Media 1) showing the statistical distribution of the delay and the corresponding incident pump power of the 1064 nm laser.

Fig. 3
Fig. 3

Modeling results on (a) the delay and (b) relative timing jitter of the 946 and 1064 nm pulses. The timing jitter in (b) is plotted in the same scale as Fig. 2b, and the inset shows the full scale.

Fig. 4
Fig. 4

(a) Correlation of pulse separation of the master laser and delay between the two lasers at a fixed pump power. The inset depicts the measurement that was carried out, while the solid line shows the least-square fit. Projection of the data points onto the vertical axis is shown as a histogram in (b), while projection of the data points onto the horizontal axis is shown as a histogram in (c). The slope of the least-square fit is subtracted from the experimental data. The resulting residual jitter, with the effect of the master laser’s pulse-to-pulse jitter removed, is shown in (d), and the corresponding histogram is shown in the inset. Solid lines in (b) and (c) show the Gaussian fits.

Metrics