Abstract

A fiber-optic Fabry–Perot interferometer was constructed by splicing a short length of photonic crystal fiber to a standard single-mode fiber. The photonic crystal fiber functions as a Fabry–Perot cavity and serves as a direct sensing probe without any additional components. Its pressure and temperature responses in the range of 0–40MPa and 25°C700°C were experimentally studied. The proposed sensor is easy to fabricate, potentially low- cost, and compact in size, which makes it very attractive for high-pressure and high-temperature sensing applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor, in Fiber Optic Sensors, F.T. S.Yu and S.Yin, eds. (Dekker, 2002), pp. 41–74.
  2. Y. J. Rao, Opt. Fiber Technol. 12, 227 (2006).
    [CrossRef]
  3. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, Opt. Lett. 31, 885 (2006).
    [CrossRef] [PubMed]
  4. J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, IEEE Photonics Technol. Lett. 18, 1134 (2006).
    [CrossRef]
  5. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Opt. Lett. 33, 2455 (2008).
    [CrossRef] [PubMed]
  6. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, Opt. Lett. 35, 1443 (2010).
    [CrossRef] [PubMed]
  7. Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, J. Lightwave Technol. 24, 861 (2006).
    [CrossRef]
  8. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, Appl. Opt. 45, 7760 (2006).
    [CrossRef] [PubMed]
  9. S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, Appl. Opt. 45, 5590 (2006).
    [CrossRef] [PubMed]
  10. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, Opt. Lett. 32, 3071 (2007).
    [CrossRef] [PubMed]
  11. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, Opt. Lett. 32, 2662 (2007).
    [CrossRef] [PubMed]
  12. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, Opt. Lett. 34, 2441 (2009).
    [CrossRef] [PubMed]
  13. J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, Opt. Express 17, 1447 (2009).
    [CrossRef] [PubMed]
  14. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, IEEE Photonics Technol. Lett. 21, 164 (2009).
    [CrossRef]
  15. C. Wu, B. O. Guan, Z. Wang, and X. Feng, J. Lightwave Technol. 28, 1392 (2010).
    [CrossRef]
  16. S. Takahashi and S. Shibata, J. Non-Cryst. Solids 30, 359 (1979).
    [CrossRef]
  17. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, J. Lightwave Technol. 28, 2799 (2010).
    [CrossRef]

2010

2009

2008

2007

2006

1979

S. Takahashi and S. Shibata, J. Non-Cryst. Solids 30, 359 (1979).
[CrossRef]

Badenes, G.

Barton, J. S.

Braune, T.

Canning, J.

Chen, J. H.

Chen, K. P.

Chen, X.

Choi, E. S.

Choi, H. Y.

Cooper, K. L.

Coviello, G.

Deng, H. Y.

Dong, L.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, IEEE Photonics Technol. Lett. 21, 164 (2009).
[CrossRef]

Duan, D. W.

Feng, X.

Finazzi, V.

Fu, L. B.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, IEEE Photonics Technol. Lett. 21, 164 (2009).
[CrossRef]

Gander, M. J.

Grobnic, D.

Guan, B. O.

He, W. X.

Huang, X. G.

Huang, Z.

Jewart, C. M.

Jha, R.

Jones, J. D. C.

Klotzbuecher, T.

Kreuzer, M. P.

Lee, B. H.

Liao, X.

Lu, C.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, IEEE Photonics Technol. Lett. 21, 164 (2009).
[CrossRef]

MacPherson, W. N.

Mihailov, S. J.

Minkovich, V. P.

Ott, J.

Paek, U. C.

Park, K. S.

Park, S. J.

Pickrell, G. R.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, IEEE Photonics Technol. Lett. 18, 1134 (2006).
[CrossRef]

Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, J. Lightwave Technol. 24, 861 (2006).
[CrossRef]

Pruneri, V.

Ran, Z. L.

Rao, Y. J.

Schmitz, F.

Shen, F.

Shibata, S.

S. Takahashi and S. Shibata, J. Non-Cryst. Solids 30, 359 (1979).
[CrossRef]

Takahashi, S.

S. Takahashi and S. Shibata, J. Non-Cryst. Solids 30, 359 (1979).
[CrossRef]

Tam, H. Y.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, IEEE Photonics Technol. Lett. 21, 164 (2009).
[CrossRef]

Taylor, H. F.

H. F. Taylor, in Fiber Optic Sensors, F.T. S.Yu and S.Yin, eds. (Dekker, 2002), pp. 41–74.

Thomas, B. K.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, IEEE Photonics Technol. Lett. 21, 164 (2009).
[CrossRef]

Tse, M. L. V.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, IEEE Photonics Technol. Lett. 21, 164 (2009).
[CrossRef]

Villatoro, J.

Wai, P. K. A.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, IEEE Photonics Technol. Lett. 21, 164 (2009).
[CrossRef]

Wang, A.

Wang, Q.

Wang, X.

X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, Opt. Lett. 31, 885 (2006).
[CrossRef] [PubMed]

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, IEEE Photonics Technol. Lett. 18, 1134 (2006).
[CrossRef]

Wang, Z.

Watson, S.

Wu, C.

Xu, J.

X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, Opt. Lett. 31, 885 (2006).
[CrossRef] [PubMed]

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, IEEE Photonics Technol. Lett. 18, 1134 (2006).
[CrossRef]

Yang, X. C.

Zhao, J. R.

Zhu, T.

Zhu, Y.

Appl. Opt.

IEEE Photonics Technol. Lett.

J. Xu, X. Wang, K. L. Cooper, G. R. Pickrell, and A. Wang, IEEE Photonics Technol. Lett. 18, 1134 (2006).
[CrossRef]

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, IEEE Photonics Technol. Lett. 21, 164 (2009).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

S. Takahashi and S. Shibata, J. Non-Cryst. Solids 30, 359 (1979).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

Y. J. Rao, Opt. Fiber Technol. 12, 227 (2006).
[CrossRef]

Opt. Lett.

Other

H. F. Taylor, in Fiber Optic Sensors, F.T. S.Yu and S.Yin, eds. (Dekker, 2002), pp. 41–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup for the measurements. (b) Schematic of the FPI sensor head. (c) Photograph of the 2.1-mm-long FPI sensor.

Fig. 2
Fig. 2

(a) Interference intensity contrast evolution versus the number of arc discharge; the insets show the photos before and after arc discharge. (b) Reflection spectrum of the 2.1-mm-long FPI after five arc discharges.

Fig. 3
Fig. 3

(a) Reflection spectrum of the 2.1-mm-long FPI under different applied hydrostatic pressures. (b) Wavelength shift as functions of applied hydrostatic pressure for FPIs with different cavity lengths.

Fig. 4
Fig. 4

(a) Wavelength shifts as functions of applied temperature for FPIs with different cavity lengths. (b) Reflection spectrum of the 1-mm-long FPI sensor at 25 ° C and at 700 ° C .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

φ = 4 π n eff L λ ,
λ m = 2 n eff L m .
Δ λ = ( Δ n eff n eff + Δ L L ) λ m = ( Δ n eff n eff + ε z ) λ m ,
( Δ n eff n eff + Δ L L ) 1 Δ T = δ + α ,

Metrics