Abstract

The dynamics of the state of polarization in multimode fiber amplifiers is presented. The experimental results reveal that although the state of polarizations at the output can vary over a large range when changing the temperatures of the fiber amplifiers, the variations are significantly reduced when resorting to the principal states of polarization in single-mode fiber amplifiers and principal modes in multimode fiber amplifiers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029(1986).
    [CrossRef]
  2. W. Shieh and H. Kogelnik, IEEE Photonics Technol. Lett. 13, 40 (2001).
    [CrossRef]
  3. J. P. Koplow, L. Goldberg, R. P. Moeller, and D. A. V. Kliner, Opt. Lett. 25, 387 (2000).
    [CrossRef]
  4. D. A. V. Kliner, J. P. Koplow, L. Goldberg, A. L. G. Carter, and J. A. Digweed, Opt. Lett. 26, 184 (2001).
    [CrossRef]
  5. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, Opt. Lett. 30, 459 (2005)
    [CrossRef] [PubMed]
  6. C. D. Poole, J. H. Winters, and J. A. Nagel, Opt. Lett. 16, 372 (1991).
    [CrossRef] [PubMed]
  7. D. Andrescianci, F. Curti, F. Matera, and B. Daino, Opt. Lett. 12, 844 (1987).
    [CrossRef]
  8. C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, J. Lightwave Technol. 6, 1185 (1988).
    [CrossRef]
  9. S. Fan and J. M. Kahn, Opt. Lett. 30, 135 (2005).
    [CrossRef] [PubMed]
  10. M. B. Shemirani, W. Mao, R. A. Panicker, and J. M. Kahn, J. Lightwave Technol. 27, 1248 (2009).
    [CrossRef]
  11. M. B. Shemirani and J. M. Kahn, J. Lightwave Technol. 27, 5461 (2009).
    [CrossRef]
  12. J. Swiderski, D. Dorosz, M. Skorczakowski, and W. Pichola, Laser Phys. 20, 1738 (2010)
    [CrossRef]
  13. M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, Opt. Express 18, 10805 (2010).
    [CrossRef] [PubMed]
  14. N. Boudriouaa, A. Boudriouab, F. Monteiroa, E. Lossona, A. Dandachea, and R. Kremer, Opt. Commun. 281, 4870 (2008).
    [CrossRef]
  15. S. C. Rashleigh and M. J. Marrone, Opt. Lett. 8, 127 (1983).
    [CrossRef] [PubMed]
  16. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
    [CrossRef]
  17. M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, Opt. Lett. 35, 1332 (2010)
    [CrossRef] [PubMed]
  18. M. Fridman, H. Suchowski, M. Nixon, A. A. Friesem, and N. Davidson, “Modal dynamics in multimode fibers,” http://arxiv.org/abs/1012.1207.

2010

2009

2008

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

N. Boudriouaa, A. Boudriouab, F. Monteiroa, E. Lossona, A. Dandachea, and R. Kremer, Opt. Commun. 281, 4870 (2008).
[CrossRef]

2005

2001

2000

1991

1988

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, J. Lightwave Technol. 6, 1185 (1988).
[CrossRef]

1987

1986

C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029(1986).
[CrossRef]

1983

Alegria, C.

Alvarez-Chavez, J. A.

Andrescianci, D.

Bergano, N. S.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, J. Lightwave Technol. 6, 1185 (1988).
[CrossRef]

Boudriouaa, N.

N. Boudriouaa, A. Boudriouab, F. Monteiroa, E. Lossona, A. Dandachea, and R. Kremer, Opt. Commun. 281, 4870 (2008).
[CrossRef]

Boudriouab, A.

N. Boudriouaa, A. Boudriouab, F. Monteiroa, E. Lossona, A. Dandachea, and R. Kremer, Opt. Commun. 281, 4870 (2008).
[CrossRef]

Carter, A. L. G.

Chryssou, C. E.

Codemard, C. A.

Curti, F.

Daino, B.

Dandachea, A.

N. Boudriouaa, A. Boudriouab, F. Monteiroa, E. Lossona, A. Dandachea, and R. Kremer, Opt. Commun. 281, 4870 (2008).
[CrossRef]

Davidson, N.

M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, Opt. Express 18, 10805 (2010).
[CrossRef] [PubMed]

M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, Opt. Lett. 35, 1332 (2010)
[CrossRef] [PubMed]

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

M. Fridman, H. Suchowski, M. Nixon, A. A. Friesem, and N. Davidson, “Modal dynamics in multimode fibers,” http://arxiv.org/abs/1012.1207.

Digweed, J. A.

Dorosz, D.

J. Swiderski, D. Dorosz, M. Skorczakowski, and W. Pichola, Laser Phys. 20, 1738 (2010)
[CrossRef]

Dubinskii, M.

Dupriez, P.

Fan, S.

Fridman, M.

M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, Opt. Express 18, 10805 (2010).
[CrossRef] [PubMed]

M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, Opt. Lett. 35, 1332 (2010)
[CrossRef] [PubMed]

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

M. Fridman, H. Suchowski, M. Nixon, A. A. Friesem, and N. Davidson, “Modal dynamics in multimode fibers,” http://arxiv.org/abs/1012.1207.

Friesem, A. A.

M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, Opt. Lett. 35, 1332 (2010)
[CrossRef] [PubMed]

M. Fridman, M. Nixon, E. Grinvald, N. Davidson, and A. A. Friesem, Opt. Express 18, 10805 (2010).
[CrossRef] [PubMed]

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

M. Fridman, H. Suchowski, M. Nixon, A. A. Friesem, and N. Davidson, “Modal dynamics in multimode fibers,” http://arxiv.org/abs/1012.1207.

Goldberg, L.

Grinvald, E.

Hickey, L. M. B.

Horley, R.

Jeong, Y.

Kahn, J. M.

Kliner, D. A. V.

Kogelnik, H.

W. Shieh and H. Kogelnik, IEEE Photonics Technol. Lett. 13, 40 (2001).
[CrossRef]

Koplow, J. P.

Kremer, R.

N. Boudriouaa, A. Boudriouab, F. Monteiroa, E. Lossona, A. Dandachea, and R. Kremer, Opt. Commun. 281, 4870 (2008).
[CrossRef]

Lossona, E.

N. Boudriouaa, A. Boudriouab, F. Monteiroa, E. Lossona, A. Dandachea, and R. Kremer, Opt. Commun. 281, 4870 (2008).
[CrossRef]

Machavariani, G.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Mao, W.

Marrone, M. J.

Matera, F.

Moeller, R. P.

Monteiroa, F.

N. Boudriouaa, A. Boudriouab, F. Monteiroa, E. Lossona, A. Dandachea, and R. Kremer, Opt. Commun. 281, 4870 (2008).
[CrossRef]

Nagel, J. A.

Nilsson, J.

Nixon, M.

Panicker, R. A.

Payne, D. N.

Pichola, W.

J. Swiderski, D. Dorosz, M. Skorczakowski, and W. Pichola, Laser Phys. 20, 1738 (2010)
[CrossRef]

Poole, C. D.

C. D. Poole, J. H. Winters, and J. A. Nagel, Opt. Lett. 16, 372 (1991).
[CrossRef] [PubMed]

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, J. Lightwave Technol. 6, 1185 (1988).
[CrossRef]

C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029(1986).
[CrossRef]

Rashleigh, S. C.

Sahu, J. K.

Schulte, H. J.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, J. Lightwave Technol. 6, 1185 (1988).
[CrossRef]

Shemirani, M. B.

Shieh, W.

W. Shieh and H. Kogelnik, IEEE Photonics Technol. Lett. 13, 40 (2001).
[CrossRef]

Skorczakowski, M.

J. Swiderski, D. Dorosz, M. Skorczakowski, and W. Pichola, Laser Phys. 20, 1738 (2010)
[CrossRef]

Soh, D. B. S.

Suchowski, H.

M. Fridman, H. Suchowski, M. Nixon, A. A. Friesem, and N. Davidson, “Modal dynamics in multimode fibers,” http://arxiv.org/abs/1012.1207.

Swiderski, J.

J. Swiderski, D. Dorosz, M. Skorczakowski, and W. Pichola, Laser Phys. 20, 1738 (2010)
[CrossRef]

Turner, P. W.

Wagner, R. E.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, J. Lightwave Technol. 6, 1185 (1988).
[CrossRef]

C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029(1986).
[CrossRef]

Wanzcyk, L.

Winters, J. H.

Appl. Phys. Lett.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Electron. Lett.

C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029(1986).
[CrossRef]

IEEE Photonics Technol. Lett.

W. Shieh and H. Kogelnik, IEEE Photonics Technol. Lett. 13, 40 (2001).
[CrossRef]

J. Lightwave Technol.

Laser Phys.

J. Swiderski, D. Dorosz, M. Skorczakowski, and W. Pichola, Laser Phys. 20, 1738 (2010)
[CrossRef]

Opt. Commun.

N. Boudriouaa, A. Boudriouab, F. Monteiroa, E. Lossona, A. Dandachea, and R. Kremer, Opt. Commun. 281, 4870 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. Fridman, H. Suchowski, M. Nixon, A. A. Friesem, and N. Davidson, “Modal dynamics in multimode fibers,” http://arxiv.org/abs/1012.1207.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration for measuring the SOP at the output of a fiber amplifier. HWP, half-wave plate; QWP, quarter-wave plate. Inset (a), Gaussian shape of the amplified spontaneous emission from a single-mode-fiber amplifier; inset (b), doughnut shape from the multimode fiber amplifier.

Fig. 2
Fig. 2

Poincaré sphere representation of experimentally measured state of polarization at the output of a single-mode-fiber amplifier while modulating the pump power. Different colors denote different input states of polarization. The three axes S 1 , S 2 , and S 3 are the three Stokes parameters.

Fig. 3
Fig. 3

Poincaré sphere representation of experimentally measured average state of polarization at the output of a multimode fiber amplifier (a) while modulating the pump power where different colors denote different input states of polarization, (b) intensity distribution at the output for the PM; (c) output SOP while varying the input wavelength. The three axes S 1 , S 2 , and S 3 are the three Stokes parameters.

Fig. 4
Fig. 4

Experimental results of the standard deviations of the output polarization as a function of the modulation amplitudes of the pump power. Circles (blue)—near the PM; asterisks (red)—far from the PM. Inset (a), polarizations at the output as a function of time when the modulation amplitude of the pump power is 120 mW . Inset (b), polarizations at the output as a function of time when the modulation amplitude of the pump power is 360 mW .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = ω c 0 l Δ n d l ,

Metrics