Abstract

A reflection-type wavelength selective IR emitter is proposed. Surface plasmon polaritons (SPPs), which occur on metallic grating at a wavelength near the pitch of the structure, are used for controlling thermal emissions. An emission peak at a wavelength nearly equal to the period of the grating is observed. As for the other wavelength, which cannot couple with the SPPs, the IR power is confined by the reflectors including the grating. The emitter temperature increases, consuming lower input power with higher power efficiency.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D’Mello and M. Butani, Indian J. Anaesth. 46, 269 (2002).
  2. E. Hecht, Optics (Addison-Wesley, 2002).
  3. M. Arndt and M. Sauer, in Proceedings of IEEE Conference on Sensors (IEEE, 2004), pp. 252–255.
  4. S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
    [CrossRef]
  5. H. Sai, Y. Kanamori, and H. Yugami, J. Micromech. Microeng. 15, S243 (2005).
    [CrossRef]
  6. K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).
  7. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
    [CrossRef]
  8. T. Okamoto and K. Kajikawa, Plasmonics (Koudansya Scientific, 2010) (in Japanese).
  9. A. Ordal, R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, Appl. Opt. 26, 744 (1987).
    [CrossRef] [PubMed]
  10. J. M. Bennett and E. J. Ashley, Appl. Opt. 4, 221 (1965).
    [CrossRef]
  11. D. E. Aspnes, in Properties of Crystalline Silicon, R.Hull, ed. (Institution of Engineering and Technology, 1999), pp. 677–696.

2008 (1)

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

2005 (1)

H. Sai, Y. Kanamori, and H. Yugami, J. Micromech. Microeng. 15, S243 (2005).
[CrossRef]

2002 (2)

J. D’Mello and M. Butani, Indian J. Anaesth. 46, 269 (2002).

S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
[CrossRef]

1993 (1)

K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).

1987 (1)

1965 (1)

Alexander, R. W.

Alexsandrov, S.

S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
[CrossRef]

Arndt, M.

M. Arndt and M. Sauer, in Proceedings of IEEE Conference on Sensors (IEEE, 2004), pp. 252–255.

Ashley, E. J.

Aspnes, D. E.

D. E. Aspnes, in Properties of Crystalline Silicon, R.Hull, ed. (Institution of Engineering and Technology, 1999), pp. 677–696.

Bell, R. J.

Bennett, J. M.

Butani, M.

J. D’Mello and M. Butani, Indian J. Anaesth. 46, 269 (2002).

D’Mello, J.

J. D’Mello and M. Butani, Indian J. Anaesth. 46, 269 (2002).

Fujimura, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Gavrilov, G.

S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
[CrossRef]

Hatade, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 2002).

Ikeda, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Ikeda, M.

K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).

Inoue, Y.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Kajikawa, K.

T. Okamoto and K. Kajikawa, Plasmonics (Koudansya Scientific, 2010) (in Japanese).

Kanakugi, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, J. Micromech. Microeng. 15, S243 (2005).
[CrossRef]

Kapralov, A.

S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
[CrossRef]

Karandashov, S.

S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
[CrossRef]

Kasaya, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Kitagawa, S.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Long, L. L.

Matveev, B.

S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Nakano, S.

K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).

Okada, M.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Okamoto, T.

T. Okamoto and K. Kajikawa, Plasmonics (Koudansya Scientific, 2010) (in Japanese).

Ordal, A.

Querry, M. R.

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, J. Micromech. Microeng. 15, S243 (2005).
[CrossRef]

Sakauchi, Y.

K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).

Sauer, M.

M. Arndt and M. Sauer, in Proceedings of IEEE Conference on Sensors (IEEE, 2004), pp. 252–255.

Shibata, K.

K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).

Sotnikova, G.

S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
[CrossRef]

Stus', N.

S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
[CrossRef]

Takeuchi, K.

K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).

Tanaka, T.

K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).

Yamada, Y.

K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).

Yamamoto, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, J. Micromech. Microeng. 15, S243 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, Appl. Phys. Lett. 92, 141114 (2008).
[CrossRef]

Indian J. Anaesth. (1)

J. D’Mello and M. Butani, Indian J. Anaesth. 46, 269 (2002).

J. Micromech. Microeng. (1)

H. Sai, Y. Kanamori, and H. Yugami, J. Micromech. Microeng. 15, S243 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Takeuchi, T. Tanaka, M. Ikeda, K. Shibata, Y. Sakauchi, Y. Yamada, and S. Nakano, Jpn. J. Appl. Phys. 32, 241 (1993).

Proc. SPIE (1)

S. Alexsandrov, G. Gavrilov, A. Kapralov, S. Karandashov, B. Matveev, G. Sotnikova, and N. Stus′, Proc. SPIE 4680, 188 (2002).
[CrossRef]

Other (4)

E. Hecht, Optics (Addison-Wesley, 2002).

M. Arndt and M. Sauer, in Proceedings of IEEE Conference on Sensors (IEEE, 2004), pp. 252–255.

T. Okamoto and K. Kajikawa, Plasmonics (Koudansya Scientific, 2010) (in Japanese).

D. E. Aspnes, in Properties of Crystalline Silicon, R.Hull, ed. (Institution of Engineering and Technology, 1999), pp. 677–696.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the proposed emitter. λ and Λ are the wavelength of IR and pitch of the grating, respectively. Arrow indicates IR. Bold arrow indicates SPPs.

Fig. 2
Fig. 2

Calculated TM-polarized absorption spectra with various incident angles θ. Inset, calculation model. Some values of θ are connected by lines at spectral peak positions.

Fig. 3
Fig. 3

(a) Image and schematic drawing of the IR emitter proposed. (b) Exploded view. Si wafer ( 20 mm × 20 mm × 0.4 mm ) is used as a base substrate. As for the grating, a line-and-space pattern having a period of 1.667 μm is transferred. Patterned area is 12.7 mm × 18 mm . Reactive ion etching of Si is carried out with an average depth of 0.25 μm . Au ( 75 nm ) is deposited following Cr ( 7.5 nm ) deposition using thermal evaporation.

Fig. 4
Fig. 4

(a) TM- and (b) TE-polarized emission spectra from Au grating (closed circles) and Au mirror (open circles). (c) Normalized emission spectra for TM and TE polarizations.

Fig. 5
Fig. 5

Input power dependence of the temperature of the heater subassembly (1) with Au grating and mirror (closed circles), (2) with Au mirrors (open circles), and (3) with Si substrates (triangles).

Metrics