Abstract

We present a four-dimensional flash trajectory imaging method to image object trajectories over time in three- dimensional space. In the method, time-delay-modulated range-gated viewing with multiple exposures is presented so that the time evolution of object trajectories free from background interference is directly given without complicated image processing and the motion parameters of objects can be estimated. The method is demonstrated by a ball oscillating as a pendulum.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Lane and M. Cada, Appl. Opt. 38, 4306 (1999).
  2. W. Lu, S. L. Lachinova, and R. G. Harrison, Opt. Lett. 29, 824 (2004).
    [PubMed]
  3. J. Sheng, E. Malkiel, and J. Katz, Appl. Opt. 45, 3893 (2006).
    [PubMed]
  4. Y. C. Cho, Appl. Opt. 28, 740 (1989).
    [PubMed]
  5. F. Goundail and P. Réfrégier, J. Opt. Soc. Am. A 14, 3197 (1997).
  6. Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, Appl. Opt. 48, 7000 (2009).
    [PubMed]
  7. W. Xu, M. H. Jericho, and H. J. Kreuzer, Opt. Lett. 28, 164 (2003).
    [PubMed]
  8. O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, Proc. SPIE 3707, 432 (1999).
  9. J. Busckand and H. Heiselberg, Appl. Opt. 43, 4705 (2004).
  10. C. S. Tan, G. Seet, A. Sluzek, and D. M. He, Opt. Lasers Eng. 43, 995 (2005).
  11. R. Y. Tsai, IEEE J. Robot. Autom. 3, 323 (1987).
  12. X. W. Wang, Y. Zhou, S. T. Fan, Y. L. Liu, and H. J. Liu, Proc. SPIE 7382, 738211 (2009).
  13. A. Criminisi, A. Zisserman, L. Van Gool, S. Bramble, and D. Compton, Proc. SPIE 3576, 227 (1998).

2009 (2)

X. W. Wang, Y. Zhou, S. T. Fan, Y. L. Liu, and H. J. Liu, Proc. SPIE 7382, 738211 (2009).

Q. Lü, Y. Chen, R. Yuan, B. Ge, Y. Gao, and Y. Zhang, Appl. Opt. 48, 7000 (2009).
[PubMed]

2006 (1)

2005 (1)

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, Opt. Lasers Eng. 43, 995 (2005).

2004 (2)

2003 (1)

1999 (2)

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, Proc. SPIE 3707, 432 (1999).

P. M. Lane and M. Cada, Appl. Opt. 38, 4306 (1999).

1998 (1)

A. Criminisi, A. Zisserman, L. Van Gool, S. Bramble, and D. Compton, Proc. SPIE 3576, 227 (1998).

1997 (1)

1989 (1)

1987 (1)

R. Y. Tsai, IEEE J. Robot. Autom. 3, 323 (1987).

Bolander, G.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, Proc. SPIE 3707, 432 (1999).

Bramble, S.

A. Criminisi, A. Zisserman, L. Van Gool, S. Bramble, and D. Compton, Proc. SPIE 3576, 227 (1998).

Busckand, J.

Cada, M.

Carlsson, C.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, Proc. SPIE 3707, 432 (1999).

Chen, Y.

Cho, Y. C.

Compton, D.

A. Criminisi, A. Zisserman, L. Van Gool, S. Bramble, and D. Compton, Proc. SPIE 3576, 227 (1998).

Criminisi, A.

A. Criminisi, A. Zisserman, L. Van Gool, S. Bramble, and D. Compton, Proc. SPIE 3576, 227 (1998).

Fan, S. T.

X. W. Wang, Y. Zhou, S. T. Fan, Y. L. Liu, and H. J. Liu, Proc. SPIE 7382, 738211 (2009).

Gao, Y.

Ge, B.

Goundail, F.

Harrison, R. G.

He, D. M.

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, Opt. Lasers Eng. 43, 995 (2005).

Heiselberg, H.

Jericho, M. H.

Katz, J.

Kreuzer, H. J.

Lachinova, S. L.

Lane, P. M.

Letalick, D.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, Proc. SPIE 3707, 432 (1999).

Liu, H. J.

X. W. Wang, Y. Zhou, S. T. Fan, Y. L. Liu, and H. J. Liu, Proc. SPIE 7382, 738211 (2009).

Liu, Y. L.

X. W. Wang, Y. Zhou, S. T. Fan, Y. L. Liu, and H. J. Liu, Proc. SPIE 7382, 738211 (2009).

Lu, W.

Lü, Q.

Malkiel, E.

Olsson, H.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, Proc. SPIE 3707, 432 (1999).

Réfrégier, P.

Seet, G.

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, Opt. Lasers Eng. 43, 995 (2005).

Sheng, J.

Sluzek, A.

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, Opt. Lasers Eng. 43, 995 (2005).

Steinvall, O.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, Proc. SPIE 3707, 432 (1999).

Tan, C. S.

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, Opt. Lasers Eng. 43, 995 (2005).

Tsai, R. Y.

R. Y. Tsai, IEEE J. Robot. Autom. 3, 323 (1987).

Van Gool, L.

A. Criminisi, A. Zisserman, L. Van Gool, S. Bramble, and D. Compton, Proc. SPIE 3576, 227 (1998).

Wang, X. W.

X. W. Wang, Y. Zhou, S. T. Fan, Y. L. Liu, and H. J. Liu, Proc. SPIE 7382, 738211 (2009).

Xu, W.

Yuan, R.

Zhang, Y.

Zhou, Y.

X. W. Wang, Y. Zhou, S. T. Fan, Y. L. Liu, and H. J. Liu, Proc. SPIE 7382, 738211 (2009).

Zisserman, A.

A. Criminisi, A. Zisserman, L. Van Gool, S. Bramble, and D. Compton, Proc. SPIE 3576, 227 (1998).

Appl. Opt. (5)

IEEE J. Robot. Autom. (1)

R. Y. Tsai, IEEE J. Robot. Autom. 3, 323 (1987).

J. Opt. Soc. Am. A (1)

Opt. Lasers Eng. (1)

C. S. Tan, G. Seet, A. Sluzek, and D. M. He, Opt. Lasers Eng. 43, 995 (2005).

Opt. Lett. (2)

Proc. SPIE (3)

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, Proc. SPIE 3707, 432 (1999).

X. W. Wang, Y. Zhou, S. T. Fan, Y. L. Liu, and H. J. Liu, Proc. SPIE 7382, 738211 (2009).

A. Criminisi, A. Zisserman, L. Van Gool, S. Bramble, and D. Compton, Proc. SPIE 3576, 227 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Flash trajectory imaging: (a) scheme of FTI, (b) VOI A and Type-A image, (c) VOI B and Type-B image, (d) time sequence of ABAB mode.

Fig. 2
Fig. 2

Bimodal gray-value distribution over time in A and B frames: (a) space relationship, (b) bimodal distribution.

Fig. 3
Fig. 3

Stair-step gray-value distribution over time in A and B frames: (a) space relationship, (b) stair-step distribution.

Fig. 4
Fig. 4

Experimental result of FTI: (a) nongated still image of target and background; (b), (c) still images of Type-A and Type-B frames with background filtered; (d), (e) successive trajectory images of Type-A and Type-B frames; (f) 4D image of (d) with time axis.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I A I B = E t ( r A ) E h ( r B ) = r B 2 ( R + L r A ) exp ( 2 σ r A ) r A 2 ( r B R ) exp ( 2 σ r B ) ,
I A I B = r B 2 ( R + L r A ) r A 2 ( r B R ) .
r A = I A + ε 2 I B ε I A + ε 2 I B R + ε I B I A + ε I B L .

Metrics