Abstract

In this Letter, the color constancy and its realization were studied and a novel color constancy image enhancement algorithm under poor illumination was presented. The purpose of this algorithm is to maintain the hue of an image during the processing so that the change of saturation can be minimized. The original image was first multiplied by a scale parameter obtained by the adaptive quadratic function to enhance the luminance, and then the edge details were restored by a shifting parameter. Numerical results of the Simon Fraser University (SFU) image database indicated that the proposed algorithm performed much better in preserving the hue and saturation and avoiding color distortion compared with the existing image enhancement algorithms.

© 2011 Optical Society of America

Full Article  |  PDF Article

Corrections

Jun Liu, Zhenfeng Shao, and Qimin Cheng, "Color constancy enhancement under poor illumination: errata," Opt. Lett. 38, 2516-2516 (2013)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-14-2516

References

  • View by:
  • |
  • |
  • |

  1. M. D’Zmura and P. Lennie, J. Opt. Soc. Am. A 3, 1662(1986).
    [CrossRef]
  2. S. S. Huang, J. B. Zhu, and M. H. Xie, J. Infrared Millimeter Waves 29, 392 (2010).
    [CrossRef]
  3. E. Land, American Scientist 52, 247 (1964).
  4. D. J. Jobson, Z. Rahman, and G. A. Woodell, IEEE Trans. Image Process. 6, 451 (1997).
    [CrossRef]
  5. Z. Rahman, D. D. Jobson, and G. A. Woodell, J. Electron. Imaging 13, 100 (2004).
    [CrossRef]
  6. D. Jobson, Z. Rahman, and G. Woodell, IEEE Trans. Image Process. 6, 965 (1997).
    [CrossRef]
  7. S. Wolf, R. Ginosar, and Y. Zeevi, J. Visual Commun. Image Represent 9, 25 (1998).
    [CrossRef]
  8. S. K. Naik and C. A. Murthy, IEEE Trans. Image Process. 12, 1591 (2003).
    [CrossRef]
  9. D. J. Jobson, Z. U. Rahman, and G. A. Woodell, Proc. SPIE 47, 25 (2002).
    [CrossRef]

2010 (1)

S. S. Huang, J. B. Zhu, and M. H. Xie, J. Infrared Millimeter Waves 29, 392 (2010).
[CrossRef]

2004 (1)

Z. Rahman, D. D. Jobson, and G. A. Woodell, J. Electron. Imaging 13, 100 (2004).
[CrossRef]

2003 (1)

S. K. Naik and C. A. Murthy, IEEE Trans. Image Process. 12, 1591 (2003).
[CrossRef]

2002 (1)

D. J. Jobson, Z. U. Rahman, and G. A. Woodell, Proc. SPIE 47, 25 (2002).
[CrossRef]

1998 (1)

S. Wolf, R. Ginosar, and Y. Zeevi, J. Visual Commun. Image Represent 9, 25 (1998).
[CrossRef]

1997 (2)

D. Jobson, Z. Rahman, and G. Woodell, IEEE Trans. Image Process. 6, 965 (1997).
[CrossRef]

D. J. Jobson, Z. Rahman, and G. A. Woodell, IEEE Trans. Image Process. 6, 451 (1997).
[CrossRef]

1986 (1)

1964 (1)

E. Land, American Scientist 52, 247 (1964).

D’Zmura, M.

Ginosar, R.

S. Wolf, R. Ginosar, and Y. Zeevi, J. Visual Commun. Image Represent 9, 25 (1998).
[CrossRef]

Huang, S. S.

S. S. Huang, J. B. Zhu, and M. H. Xie, J. Infrared Millimeter Waves 29, 392 (2010).
[CrossRef]

Jobson, D.

D. Jobson, Z. Rahman, and G. Woodell, IEEE Trans. Image Process. 6, 965 (1997).
[CrossRef]

Jobson, D. D.

Z. Rahman, D. D. Jobson, and G. A. Woodell, J. Electron. Imaging 13, 100 (2004).
[CrossRef]

Jobson, D. J.

D. J. Jobson, Z. U. Rahman, and G. A. Woodell, Proc. SPIE 47, 25 (2002).
[CrossRef]

D. J. Jobson, Z. Rahman, and G. A. Woodell, IEEE Trans. Image Process. 6, 451 (1997).
[CrossRef]

Land, E.

E. Land, American Scientist 52, 247 (1964).

Lennie, P.

Murthy, C. A.

S. K. Naik and C. A. Murthy, IEEE Trans. Image Process. 12, 1591 (2003).
[CrossRef]

Naik, S. K.

S. K. Naik and C. A. Murthy, IEEE Trans. Image Process. 12, 1591 (2003).
[CrossRef]

Rahman, Z.

Z. Rahman, D. D. Jobson, and G. A. Woodell, J. Electron. Imaging 13, 100 (2004).
[CrossRef]

D. Jobson, Z. Rahman, and G. Woodell, IEEE Trans. Image Process. 6, 965 (1997).
[CrossRef]

D. J. Jobson, Z. Rahman, and G. A. Woodell, IEEE Trans. Image Process. 6, 451 (1997).
[CrossRef]

Rahman, Z. U.

D. J. Jobson, Z. U. Rahman, and G. A. Woodell, Proc. SPIE 47, 25 (2002).
[CrossRef]

Wolf, S.

S. Wolf, R. Ginosar, and Y. Zeevi, J. Visual Commun. Image Represent 9, 25 (1998).
[CrossRef]

Woodell, G.

D. Jobson, Z. Rahman, and G. Woodell, IEEE Trans. Image Process. 6, 965 (1997).
[CrossRef]

Woodell, G. A.

Z. Rahman, D. D. Jobson, and G. A. Woodell, J. Electron. Imaging 13, 100 (2004).
[CrossRef]

D. J. Jobson, Z. U. Rahman, and G. A. Woodell, Proc. SPIE 47, 25 (2002).
[CrossRef]

D. J. Jobson, Z. Rahman, and G. A. Woodell, IEEE Trans. Image Process. 6, 451 (1997).
[CrossRef]

Xie, M. H.

S. S. Huang, J. B. Zhu, and M. H. Xie, J. Infrared Millimeter Waves 29, 392 (2010).
[CrossRef]

Zeevi, Y.

S. Wolf, R. Ginosar, and Y. Zeevi, J. Visual Commun. Image Represent 9, 25 (1998).
[CrossRef]

Zhu, J. B.

S. S. Huang, J. B. Zhu, and M. H. Xie, J. Infrared Millimeter Waves 29, 392 (2010).
[CrossRef]

American Scientist (1)

E. Land, American Scientist 52, 247 (1964).

IEEE Trans. Image Process. (3)

D. J. Jobson, Z. Rahman, and G. A. Woodell, IEEE Trans. Image Process. 6, 451 (1997).
[CrossRef]

D. Jobson, Z. Rahman, and G. Woodell, IEEE Trans. Image Process. 6, 965 (1997).
[CrossRef]

S. K. Naik and C. A. Murthy, IEEE Trans. Image Process. 12, 1591 (2003).
[CrossRef]

J. Electron. Imaging (1)

Z. Rahman, D. D. Jobson, and G. A. Woodell, J. Electron. Imaging 13, 100 (2004).
[CrossRef]

J. Infrared Millimeter Waves (1)

S. S. Huang, J. B. Zhu, and M. H. Xie, J. Infrared Millimeter Waves 29, 392 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Visual Commun. Image Represent (1)

S. Wolf, R. Ginosar, and Y. Zeevi, J. Visual Commun. Image Represent 9, 25 (1998).
[CrossRef]

Proc. SPIE (1)

D. J. Jobson, Z. U. Rahman, and G. A. Woodell, Proc. SPIE 47, 25 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The original and enhanced images: (a) original, (b) enhanced.

Fig. 2.
Fig. 2.

Original and enhanced results. (a) original (b) log (c) MSRCR (d) the proposed algorithm.

Fig. 3.
Fig. 3.

Original and enhanced results. (a) original (b) log (c) MSRCR (d) the proposed algorithm.

Tables (3)

Tables Icon

Table 1. The Distribution of Edge Details Values

Tables Icon

Table 2. The Evaluation Results of Fig. 2

Tables Icon

Table 3. The Evaluation Results of Fig. 3

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

{H={arccos(φ)ifGR2πarccos(φ)ifG<R,S=13min(R,G,B)R+G+B=13X0R+G+B=IX0I,
φ=(2BGR)/2(BG)2+(BR)(GR),X0=min(R,G,B),
X=(αR+β,αG+β,αB+β)=αX+β.
S=IX0I=α(IX0)αI+β.
I=(R+G+B)/3.
y2=mv127.52(x127.5)2+(255mv),
l={0,x=0,mv127.52(x127.5)2+(255mv)/x,x>0,
g=f(xsum)=log(1+xsum+1c),
α=lg.
B=1256[1464141624164624362464162416414641].
β=IB*I,
{R=αR+βG=αG+βB=αB+β.
H=1MNi=1Mj=1N|HOri(i,j)HRe(i,j)|HOri(i,j),
S=1MNi=1Mj=1N|SOri(i,j)SRe(i,j)|SOri(i,j),

Metrics