Abstract

We demonstrate an approach to creating localized whispering gallery mode (WGM) microcavities by exploiting the photosensitivity of a chalcogenide (As2S3) microfiber. A highly prolate WGM microcavity with cavity quality factors (Q) exceeding 2×105 is fabricated and characterized. Without the need for geometrical shaping, our approach enables the cavity properties to be monitored during fabrication for the first time.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, Opt. Lett. 29, 8 (2004).
    [CrossRef]
  2. Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
    [CrossRef]
  3. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, Opt. Lett. 35, 1893 (2010).
    [CrossRef]
  4. M. Sumetsky, Y. Dulashko, and R. S. Windeler, Opt. Lett. 35, 1866 (2010).
    [CrossRef]
  5. M. Pöllinger and A. Rauschenbeutel, Opt. Express 18, 17764 (2010).
    [CrossRef]
  6. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).
    [CrossRef]
  7. M. Sumetsky, in CLEO/Europe and EQEC 2011 Conference Digest, pp. 1, paper PDA_8 (2011).
  8. M. Sumetsky, Opt. Lett. 36, 145 (2011).
    [CrossRef]
  9. B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nature Photonics 5, 141 (2011).
    [CrossRef]
  10. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Mägi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, Opt. Lett. 34, 3671 (2009).
    [CrossRef]
  11. A. W. Poon, R. K. Chang, and J. A. Lock, Opt. Lett. 23, 1105 (1998).
    [CrossRef]
  12. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, Opt. Express 15, 10324 (2007).
    [CrossRef]
  13. T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
    [CrossRef]
  14. M. Oxborrow, IEEE Trans. Microw. Theory Techniques 55, 1209 (2007).
    [CrossRef]
  15. M. Sumetsky and Y. Dulashko, Opt. Lett. 35, 4006 (2010).
    [CrossRef]
  16. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, Opt. Express 17, 5998 (2009).
    [CrossRef]

2011 (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nature Photonics 5, 141 (2011).
[CrossRef]

M. Sumetsky, Opt. Lett. 36, 145 (2011).
[CrossRef]

2010 (4)

2009 (3)

2007 (2)

2005 (1)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

2004 (1)

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

1998 (1)

Agha, I. H.

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Broaddus, D. H.

Bulla, D. A. P.

Chang, R. K.

Choi, D-Y.

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Dulashko, Y.

Eggleton, B. J.

Foster, M. A.

Fu, L. B.

Gaeta, A. L.

Gai, X.

Grillet, C.

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Lamont, M. R.

Lee, M. W.

Lipson, M.

Lock, J. A.

Louyer, Y.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Meschede, D.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

Moss, D. J.

Murugan, G. S.

Nguyen, H. C.

O’Shea, D.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Oxborrow, M.

M. Oxborrow, IEEE Trans. Microw. Theory Techniques 55, 1209 (2007).
[CrossRef]

Pöllinger, M.

M. Pöllinger and A. Rauschenbeutel, Opt. Express 18, 17764 (2010).
[CrossRef]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Poon, A. W.

Rauschenbeutel, A.

M. Pöllinger and A. Rauschenbeutel, Opt. Express 18, 17764 (2010).
[CrossRef]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nature Photonics 5, 141 (2011).
[CrossRef]

Robinson, J. T.

Sumetsky, M.

Tomljenovic-Hanic, S.

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Wilkinson, J. S.

Windeler, R. S.

Yeom, D. I.

Zervas, M. N.

IEEE Photon. Technol. Lett. (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

IEEE Trans. Microw. Theory Techniques (1)

M. Oxborrow, IEEE Trans. Microw. Theory Techniques 55, 1209 (2007).
[CrossRef]

Nature Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nature Photonics 5, 141 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Phys. Rev. A (1)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef]

Other (1)

M. Sumetsky, in CLEO/Europe and EQEC 2011 Conference Digest, pp. 1, paper PDA_8 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Localization of WGMs on a dielectric rod where a section has a longer cutoff wavelength (λII,m) for given azimuthal number m than that of surroundings (λI,m, λIII,m). Cavity creation is possible by (b) diameter shaping or (c) index shaping.

Fig. 2.
Fig. 2.

Schematic plot of the experimental setup. The As2S3 microfiber (15.5μm) and silica taper probe (1.2μm) are orthogonally placed. A focused green laser from a fiber coupled source is used for exposure.

Fig. 3.
Fig. 3.

Spectra recorded under different exposure times. The spectral blue shift indicates negative photoinduced index change. By tracing the resonance dips (black straight line), we can estimate the rate of the spectral shift.

Fig. 4.
Fig. 4.

The comparison of the WGM resonance profile before and after 12 min of exposure. The inset shows the Gaussian fit of the spectral shift due to exposure.

Fig. 5.
Fig. 5.

Real-time monitoring of the cavity mode evolution during exposure.

Fig. 6.
Fig. 6.

(a) Polarization properties of the WGM cavity modes. (b) is the zoom-in of (a) around 1550 nm. (c) The measured line width of a TM mode in (b) by fitting it with a Lorentz curve in linear scale.

Metrics