Abstract

Two 5 µm continuous wave quantum cascade lasers are used to perform a counterpropagating pump and probe experiment on a low pressure sample of nitric oxide. The strong pump field excites a fundamental rovibrational transition and the weaker probe field is tuned to the corresponding rotationally resolved hot band transition. When both light fields are in resonance, rapid passage is observed in the hot band absorption lineshape arising from a minimally damped and velocity-selected sample of molecules in the v=1 state. The measured rapid passage signals are well described by a two-level model based on the optical Bloch equations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
    [CrossRef]
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
    [CrossRef]
  3. F. Capasso, Opt. Eng. 49, 111102 (2010).
    [CrossRef]
  4. G. Hancock, G. Ritchie, J.-P. van Helden, R. Walker, and D. Weidmann, Opt. Eng. 49, 111121 (2010).
    [CrossRef]
  5. R. J. Walker, J. H. van Helden, and G. A. D. Ritchie, Chem. Phys. Lett. 501, 20 (2010).
    [CrossRef]
  6. L. N. Trefethen, Spectral Methods in MATLAB (SIAM, 2000).
  7. H. Torrey, Phys. Rev. 76, 1059 (1949).
    [CrossRef]
  8. V. V. Khodos, D. A. Ryndyk, and V. L. Vaks, Eur. Phys. J. Appl. Phys. 25, 203 (2004).
    [CrossRef]
  9. M. T. McCulloch, G. Duxbury, and N. Langford, Mol. Phys. 104, 2767 (2006).
    [CrossRef]
  10. M. Islam, I. W. M. Smith, and M. H. Alexander, Phys. Chem. Chem. Phys. 2, 473 (2000).
    [CrossRef]
  11. S. M. Hamadani, A. T. Mattick, N. A. Kurnit, and A. Javan, Appl. Phys. Lett. 27, 21 (1975).
    [CrossRef]
  12. N. Mukherjee and R. N. Zare, Chem. Phys. Chem. 132, 154302 (2010).

2010 (5)

F. Capasso, Opt. Eng. 49, 111102 (2010).
[CrossRef]

G. Hancock, G. Ritchie, J.-P. van Helden, R. Walker, and D. Weidmann, Opt. Eng. 49, 111121 (2010).
[CrossRef]

R. J. Walker, J. H. van Helden, and G. A. D. Ritchie, Chem. Phys. Lett. 501, 20 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

N. Mukherjee and R. N. Zare, Chem. Phys. Chem. 132, 154302 (2010).

2006 (1)

M. T. McCulloch, G. Duxbury, and N. Langford, Mol. Phys. 104, 2767 (2006).
[CrossRef]

2004 (1)

V. V. Khodos, D. A. Ryndyk, and V. L. Vaks, Eur. Phys. J. Appl. Phys. 25, 203 (2004).
[CrossRef]

2000 (1)

M. Islam, I. W. M. Smith, and M. H. Alexander, Phys. Chem. Chem. Phys. 2, 473 (2000).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef]

1975 (1)

S. M. Hamadani, A. T. Mattick, N. A. Kurnit, and A. Javan, Appl. Phys. Lett. 27, 21 (1975).
[CrossRef]

1949 (1)

H. Torrey, Phys. Rev. 76, 1059 (1949).
[CrossRef]

Alexander, M. H.

M. Islam, I. W. M. Smith, and M. H. Alexander, Phys. Chem. Chem. Phys. 2, 473 (2000).
[CrossRef]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

F. Capasso, Opt. Eng. 49, 111102 (2010).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

Duxbury, G.

M. T. McCulloch, G. Duxbury, and N. Langford, Mol. Phys. 104, 2767 (2006).
[CrossRef]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

Hamadani, S. M.

S. M. Hamadani, A. T. Mattick, N. A. Kurnit, and A. Javan, Appl. Phys. Lett. 27, 21 (1975).
[CrossRef]

Hancock, G.

G. Hancock, G. Ritchie, J.-P. van Helden, R. Walker, and D. Weidmann, Opt. Eng. 49, 111121 (2010).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef]

Islam, M.

M. Islam, I. W. M. Smith, and M. H. Alexander, Phys. Chem. Chem. Phys. 2, 473 (2000).
[CrossRef]

Javan, A.

S. M. Hamadani, A. T. Mattick, N. A. Kurnit, and A. Javan, Appl. Phys. Lett. 27, 21 (1975).
[CrossRef]

Khodos, V. V.

V. V. Khodos, D. A. Ryndyk, and V. L. Vaks, Eur. Phys. J. Appl. Phys. 25, 203 (2004).
[CrossRef]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

Kurnit, N. A.

S. M. Hamadani, A. T. Mattick, N. A. Kurnit, and A. Javan, Appl. Phys. Lett. 27, 21 (1975).
[CrossRef]

Langford, N.

M. T. McCulloch, G. Duxbury, and N. Langford, Mol. Phys. 104, 2767 (2006).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

Mattick, A. T.

S. M. Hamadani, A. T. Mattick, N. A. Kurnit, and A. Javan, Appl. Phys. Lett. 27, 21 (1975).
[CrossRef]

McCulloch, M. T.

M. T. McCulloch, G. Duxbury, and N. Langford, Mol. Phys. 104, 2767 (2006).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

Mukherjee, N.

N. Mukherjee and R. N. Zare, Chem. Phys. Chem. 132, 154302 (2010).

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

Ritchie, G.

G. Hancock, G. Ritchie, J.-P. van Helden, R. Walker, and D. Weidmann, Opt. Eng. 49, 111121 (2010).
[CrossRef]

Ritchie, G. A. D.

R. J. Walker, J. H. van Helden, and G. A. D. Ritchie, Chem. Phys. Lett. 501, 20 (2010).
[CrossRef]

Ryndyk, D. A.

V. V. Khodos, D. A. Ryndyk, and V. L. Vaks, Eur. Phys. J. Appl. Phys. 25, 203 (2004).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef]

Smith, I. W. M.

M. Islam, I. W. M. Smith, and M. H. Alexander, Phys. Chem. Chem. Phys. 2, 473 (2000).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

Torrey, H.

H. Torrey, Phys. Rev. 76, 1059 (1949).
[CrossRef]

Trefethen, L. N.

L. N. Trefethen, Spectral Methods in MATLAB (SIAM, 2000).

Vaks, V. L.

V. V. Khodos, D. A. Ryndyk, and V. L. Vaks, Eur. Phys. J. Appl. Phys. 25, 203 (2004).
[CrossRef]

van Helden, J. H.

R. J. Walker, J. H. van Helden, and G. A. D. Ritchie, Chem. Phys. Lett. 501, 20 (2010).
[CrossRef]

van Helden, J.-P.

G. Hancock, G. Ritchie, J.-P. van Helden, R. Walker, and D. Weidmann, Opt. Eng. 49, 111121 (2010).
[CrossRef]

Walker, R.

G. Hancock, G. Ritchie, J.-P. van Helden, R. Walker, and D. Weidmann, Opt. Eng. 49, 111121 (2010).
[CrossRef]

Walker, R. J.

R. J. Walker, J. H. van Helden, and G. A. D. Ritchie, Chem. Phys. Lett. 501, 20 (2010).
[CrossRef]

Weidmann, D.

G. Hancock, G. Ritchie, J.-P. van Helden, R. Walker, and D. Weidmann, Opt. Eng. 49, 111121 (2010).
[CrossRef]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

Zare, R. N.

N. Mukherjee and R. N. Zare, Chem. Phys. Chem. 132, 154302 (2010).

Appl. Phys. Lett. (1)

S. M. Hamadani, A. T. Mattick, N. A. Kurnit, and A. Javan, Appl. Phys. Lett. 27, 21 (1975).
[CrossRef]

Chem. Phys. Chem. (1)

N. Mukherjee and R. N. Zare, Chem. Phys. Chem. 132, 154302 (2010).

Chem. Phys. Lett. (2)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
[CrossRef]

R. J. Walker, J. H. van Helden, and G. A. D. Ritchie, Chem. Phys. Lett. 501, 20 (2010).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

V. V. Khodos, D. A. Ryndyk, and V. L. Vaks, Eur. Phys. J. Appl. Phys. 25, 203 (2004).
[CrossRef]

Mol. Phys. (1)

M. T. McCulloch, G. Duxbury, and N. Langford, Mol. Phys. 104, 2767 (2006).
[CrossRef]

Opt. Eng. (2)

F. Capasso, Opt. Eng. 49, 111102 (2010).
[CrossRef]

G. Hancock, G. Ritchie, J.-P. van Helden, R. Walker, and D. Weidmann, Opt. Eng. 49, 111121 (2010).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

M. Islam, I. W. M. Smith, and M. H. Alexander, Phys. Chem. Chem. Phys. 2, 473 (2000).
[CrossRef]

Phys. Rev. (1)

H. Torrey, Phys. Rev. 76, 1059 (1949).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef]

Other (1)

L. N. Trefethen, Spectral Methods in MATLAB (SIAM, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental transmission spectra showing (a) light detected from pump (gray) and probe (black) lasers on the same timescale, note cutaways b and c showing, (b) probe laser scan when the pump laser is off resonance with the R(6.5)1/2 transition of the v=10 band, (c) probe laser scan when pump laser is on resonance with the R(6.5)1/2 transition of the v=10 band.

Fig. 2.
Fig. 2.

Comparison of experimental and simulated velocity-selected RP signals for 30 mTorr of NO and a chirp rate of 0.13MHzns1.

Fig. 3.
Fig. 3.

Decay times retrieved from the fitting of experimental RP signals with Eq. (1) as a function of the pressure of NO. The data are averaged over both Λ-doublet components of the P(7.5)1/2 transition of the v=21 band and over both up and down frequency scans.

Fig. 4.
Fig. 4.

Hot band spectra taken at 100 mTorr of NO. At these higher pressures population can be seen to scatter into a range of velocity states as well as the neighboring near-degenerate Λ-doublet component.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A(t)=A0e-t/τsin(μt2),

Metrics