Abstract

In the traditional long-range surface plasmon geometry, an ultrathin metal film is sandwiched between two layers having identical dielectric constants. Here we demonstrate the long-range surface plasmon polariton (LRSPP) properties for a new structure where a thin layer with a dielectric constant exceeding that of the surroundings is inserted within the sandwich, provided the layer thickness d satisfies the condition kd=mπ where k is the component of the guide wavevector perpendicular to the layer and m is an integer. The resulting plasmon modes have smaller losses and nearly the same phase velocity as the original LRSPP. This provides a strategy to support silver films having thicknesses of 10s of nanometers to create plasmonic devices for sensor applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
    [CrossRef]
  2. R. W. Gruhlke, W. R. Holland, and D. G. Hall, Opt. Lett. 12, 364 (1987).
    [CrossRef] [PubMed]
  3. G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).
    [CrossRef]
  4. Q. Min, C. Chen, P. Berini, and R. Gordon, Opt. Express 18, 19009 (2010).
    [CrossRef] [PubMed]
  5. A. Boltasseve, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, J. Lightwave Technol. 23, 413 (2005).
    [CrossRef]
  6. W. Mu, D. B. Buchholz, M. Sukharev, J. I. Jang, R. P. Chang, and J. B. Ketterson, Opt. Lett. 35, 550 (2010).
    [CrossRef] [PubMed]
  7. M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, J. Chem. Phys. 131, 034708 (2009).
    [CrossRef] [PubMed]
  8. P. Berini, Adv. Opt. Photon. 1, 484 (2009).
    [CrossRef]
  9. P. Berini, R. Charbonneau, and N. Lahoud, Nano Lett. 7, 1376 (2007).
    [CrossRef] [PubMed]
  10. Here, we only consider the real part of the left hand side of the equation. For long-range surface plasmon, the wavevector β is a complex number, where the imaginary part is much smaller than the real part; in turn, k2yd2 will also a complex number, with very small imaginary part.
  11. Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985).

2010 (2)

2009 (2)

P. Berini, Adv. Opt. Photon. 1, 484 (2009).
[CrossRef]

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, J. Chem. Phys. 131, 034708 (2009).
[CrossRef] [PubMed]

2007 (1)

P. Berini, R. Charbonneau, and N. Lahoud, Nano Lett. 7, 1376 (2007).
[CrossRef] [PubMed]

2005 (1)

2001 (1)

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).
[CrossRef]

1987 (1)

1981 (1)

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Berini, P.

Boltasseve, A.

Bozhevolnyi, S. I.

Buchholz, D. B.

Chang, R. P.

Charbonneau, R.

P. Berini, R. Charbonneau, and N. Lahoud, Nano Lett. 7, 1376 (2007).
[CrossRef] [PubMed]

Chen, C.

Gordon, R.

Gruhlke, R. W.

Hall, D. G.

Holland, W. R.

Homola, J.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).
[CrossRef]

Jang, J. I.

Ketterson, J. B.

W. Mu, D. B. Buchholz, M. Sukharev, J. I. Jang, R. P. Chang, and J. B. Ketterson, Opt. Lett. 35, 550 (2010).
[CrossRef] [PubMed]

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, J. Chem. Phys. 131, 034708 (2009).
[CrossRef] [PubMed]

Kjaer, K.

Lahoud, N.

P. Berini, R. Charbonneau, and N. Lahoud, Nano Lett. 7, 1376 (2007).
[CrossRef] [PubMed]

Larsen, M. S.

Leosson, K.

Min, Q.

Mu, W.

Nenninger, G. G.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).
[CrossRef]

Nikolajsen, T.

Sarid, D.

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Seideman, T.

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, J. Chem. Phys. 131, 034708 (2009).
[CrossRef] [PubMed]

Sievert, P. R.

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, J. Chem. Phys. 131, 034708 (2009).
[CrossRef] [PubMed]

Sukharev, M.

W. Mu, D. B. Buchholz, M. Sukharev, J. I. Jang, R. P. Chang, and J. B. Ketterson, Opt. Lett. 35, 550 (2010).
[CrossRef] [PubMed]

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, J. Chem. Phys. 131, 034708 (2009).
[CrossRef] [PubMed]

Tobiska, P.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).
[CrossRef]

Yee, S. S.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).
[CrossRef]

Adv. Opt. Photon. (1)

J. Chem. Phys. (1)

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, J. Chem. Phys. 131, 034708 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nano Lett. (1)

P. Berini, R. Charbonneau, and N. Lahoud, Nano Lett. 7, 1376 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Sens. Actuators B (1)

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).
[CrossRef]

Other (2)

Here, we only consider the real part of the left hand side of the equation. For long-range surface plasmon, the wavevector β is a complex number, where the imaginary part is much smaller than the real part; in turn, k2yd2 will also a complex number, with very small imaginary part.

Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Thin metal film embedded in symmetric environment for LRSPP. (b) The geometry when an extra substrate layer inserted inside the metal film.

Fig. 2
Fig. 2

(a) Excitation geometry for the surface plasmons via the attenuated (total) internal reflection or ATR method. (b) The reflectivity of the incoming laser beam for three cases. The inset shows an expanded view of the region surrounding reflection dips associated with the LRSPPS.

Fig. 3
Fig. 3

Intensity and in-plane electric field enhancements inside the structures relative to the incoming beam. (a)–(c): For the three cases when the long-range surface plasmons are optimally excited. (d),(e) For case B and case C when the other modes inside the structures are optimally excited. The black dashed line marks the position of the zero in the electric field.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ( x , y , z ) = z ^ H z ( y ) exp ( i β x i ω t ) ,
H z ( y ) = { A 1 exp [ i k 1 y ( y d m 1 d 2 ) ] A 2 exp [ i k m y ( y d m 1 d 2 ) ] + A 3 exp [ i k m y ( y d 2 ) ] A 4 exp [ i k 2 y ( y d 2 ) ] + A 5 exp [ i k 2 y y ] A 6 exp [ i k m y y ] + A 7 exp [ i k m y ( y + d m 2 ) ] A 8 exp [ i k 1 y ( y + d m 2 ) ] y d m 1 + d 2 d m 1 + d 2 y d 2 d 2 y 0 0 y d m 2 y d m 2 .
ε 1 k m y sinh ( γ m y d m ) + ε m k 1 y cosh ( γ m y d m ) ε 1 k m y cosh ( γ m y d m ) + ε m k 1 y sinh ( γ m y d m ) = i k 2 y ε m k m y ε 2     × { tan ( k 2 y d 2 / 2 ) ; cot ( k 2 y d 2 / 2 ) ; A 1 = A 8 A 1 = A 8 ,
β r = 2 π n 0 sin θ / λ = n 0 k 0 sin θ .

Metrics