Abstract

A method to reproduce colored images with a guided-mode resonance filter (GMRF) array is presented in this Letter. Because of their excellent characteristics, monochromatic light of the three primary colors with high purity can be achieved by using GMRF structures. Moreover, the primary colors are obtained without changing other GMRF parameters except the period, which could be realized easily with laser direct writing technology. The result shows that a colored image with high resolution and verisimilitude can be reproduced.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lochbihler, Opt. Express 17, 12189 (2009).
    [CrossRef] [PubMed]
  2. H. Lochbihler, Phys. Rev. B 53, 10289 (1996).
    [CrossRef]
  3. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, Opt. Lett. 23, 1556 (1998).
    [CrossRef]
  4. R. Magnusson, D. Shin, and Z. S. Liu, Opt. Lett. 23, 612(1998).
    [CrossRef]
  5. R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022(1992).
    [CrossRef]
  6. S. Westland and C. Ripamonti, Computational Colour Science Using MATLAB (Wiley-Interscience, 2004).
    [CrossRef]
  7. B. Gralak, G. Tayeb, and S. Enoch, Opt. Express 9, 567 (2001).
    [CrossRef] [PubMed]
  8. S. Kinoshita and S. Yoshioka, Chem. Phys. Chem. 6, 1442(2005).
    [CrossRef] [PubMed]
  9. M. G. Moharam, E. B. Grann, and D. A. Pommet, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  10. A. Mizutani, H. Kikuta, K. Iwata, and H. Toyota, J. Opt. Soc. Am. A 19, 1346 (2002).
    [CrossRef]
  11. S. S. Wang and R. Magnusson, Opt. Lett. 19, 919 (1994).
    [CrossRef] [PubMed]
  12. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley-Interscience, 1967).

2009 (1)

2005 (1)

S. Kinoshita and S. Yoshioka, Chem. Phys. Chem. 6, 1442(2005).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

1998 (2)

1996 (1)

H. Lochbihler, Phys. Rev. B 53, 10289 (1996).
[CrossRef]

1995 (1)

1994 (1)

1992 (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022(1992).
[CrossRef]

Enoch, S.

Gralak, B.

Grann, E. B.

Iwata, K.

Kikuta, H.

Kinoshita, S.

S. Kinoshita and S. Yoshioka, Chem. Phys. Chem. 6, 1442(2005).
[CrossRef] [PubMed]

Liu, Z. S.

Lochbihler, H.

Magnusson, R.

Mizutani, A.

Moharam, M. G.

Pommet, D. A.

Ripamonti, C.

S. Westland and C. Ripamonti, Computational Colour Science Using MATLAB (Wiley-Interscience, 2004).
[CrossRef]

Shin, D.

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley-Interscience, 1967).

Tayeb, G.

Tibuleac, S.

Toyota, H.

Wang, S. S.

S. S. Wang and R. Magnusson, Opt. Lett. 19, 919 (1994).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022(1992).
[CrossRef]

Westland, S.

S. Westland and C. Ripamonti, Computational Colour Science Using MATLAB (Wiley-Interscience, 2004).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley-Interscience, 1967).

Yoshioka, S.

S. Kinoshita and S. Yoshioka, Chem. Phys. Chem. 6, 1442(2005).
[CrossRef] [PubMed]

Young, P. P.

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022(1992).
[CrossRef]

Chem. Phys. Chem. (1)

S. Kinoshita and S. Yoshioka, Chem. Phys. Chem. 6, 1442(2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

H. Lochbihler, Phys. Rev. B 53, 10289 (1996).
[CrossRef]

Other (2)

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley-Interscience, 1967).

S. Westland and C. Ripamonti, Computational Colour Science Using MATLAB (Wiley-Interscience, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of the GMRF. The parameters are nc = 1.0 (air), n s = 1.52 (glass), n 1 = 1.85 (ITO), n 2 = 2.0 ( HfO 2 ), n H = 1.6 (photoresist), n L = 1.0 (air), d 1 = 74 nm , d 2 = 69 nm , d 3 = 105 nm , f = 0.5 , and periods are Λ = 372 , 322, and 266 nm .

Fig. 2
Fig. 2

Calculated zero-level reflection efficiency and the primary color [red (top), green (middle), and blue (bottom)] generated with the GMRF structure for (a) TE polarization, (b) TM polarization, and (c)  ( TE + TM ) / 2 . The inset in each subgraph shows the corresponding color with R, G, and B values calculated.

Fig. 3
Fig. 3

Reflected colors of the GMRFs we designed are plotted as vertices of a triangle into the CIE 1931 chromaticity diagram (the solid line represents TE polarization, and the dashed–dotted line represents unpolarized daylight).

Fig. 4
Fig. 4

Master image and the simulation results for (a) TE-polarized illumination, (b) TM-polarized illumination, and (c) unpolarized illumination. The small picture beside each subgraph is a partial enlarged drawing of the same pixel.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

X = k λ S ( λ ) ρ ( λ ) x ¯ ( λ ) d λ , Y = k λ S ( λ ) ρ ( λ ) y ¯ ( λ ) d λ , Z = k λ S ( λ ) ρ ( λ ) z ¯ ( λ ) d λ ,
1 / k = λ S ( λ ) y ¯ ( λ ) d λ .
[ R linear G linear B linear ] = [ 3.2406 1.5372 0.4986 0.9689 1.8758 0.0415 0.0557 0.2040 1.0570 ] [ X Y Z ] .
C srgb = { 12.92 C linear ( 1 + a ) C linear 1 2.4 C linear 0.0031308 C linear > 0.0031308 .

Metrics