Abstract

An optical fiber probe, based on spherical coupling of light energy, is proposed to transform the lateral displacement of a spherical coupler into the deflection of a light energy center, while the light energy is transmitted in the reverse direction. Therefore, the shadowing effect of a microcavity can be eliminated. The probe has a high displacement sensitivity, allowing precision inner-dimension measurements of microstructures with high aspect ratios. Measurements of microholes and fuel injection nozzles indicate that, for a microstructure with an aspect ratio of up to 151, a probing force <1μN, a resolution of up to 0.05μm can be achieved using the proposed probe, which is easy to exchange and low cost.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription