Abstract

An integrated arrayed-waveguide grating fabricated in silicon-oxynitride technology is applied to Raman spectroscopy. After its validation by reproducing the well-known spectrum of cyclohexane, polarized Raman spectra are measured of extracted human teeth containing localized initial carious lesions. Excellent agreement is obtained between the spectra of healthy and carious tooth enamel measured with our integrated device and spectra recorded using a conventional Raman spectrometer. Our results represent a step toward the realization of compact, hand-held, integrated spectrometers, e.g. for the detection of dental caries at an early stage.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit, Electron. Lett. 24, 385 (1988).
    [CrossRef]
  2. W. Hill and V. Petrou, Appl. Spectrosc. 54, 795 (2000).
    [CrossRef]
  3. C.-T. Ko, L.-P. Choo-Smith, M. Hewko, M. G. Sowa, C. C. S. Dong, and B. Cleghorn, Opt. Express 14, 203 (2006).
    [CrossRef] [PubMed]
  4. M. K. Smit and C. v. Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
    [CrossRef]
  5. N. Ismail, F. Sun, G. Sengo, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, Opt. Express 19, 8781 (2011).
    [CrossRef] [PubMed]
  6. M. V. Garcia and M. I. Redondo, J. Chem. Edu. 62, 887 (1985).
    [CrossRef]
  7. M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCormick, and D. H. Rank, Anal. Chem. 19, 700 (1947).
    [CrossRef]
  8. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, J. Lightwave Technol. 13, 447 (1995).
    [CrossRef]
  9. M. J. Pelletier, Appl. Spectrosc. 53, 1087 (1999).
    [CrossRef]
  10. N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, Opt. Lett. 35, 2741 (2010).
    [CrossRef] [PubMed]

2011

2010

2006

2000

1999

1996

M. K. Smit and C. v. Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

1995

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, J. Lightwave Technol. 13, 447 (1995).
[CrossRef]

1988

M. K. Smit, Electron. Lett. 24, 385 (1988).
[CrossRef]

1985

M. V. Garcia and M. I. Redondo, J. Chem. Edu. 62, 887 (1985).
[CrossRef]

1947

M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCormick, and D. H. Rank, Anal. Chem. 19, 700 (1947).
[CrossRef]

Akca, B. I.

Braun, W. G.

M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCormick, and D. H. Rank, Anal. Chem. 19, 700 (1947).
[CrossRef]

Choo-Smith, L.-P.

Cleghorn, B.

Dam, C. v.

M. K. Smit and C. v. Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

de Ridder, R. M.

Dong, C. C. S.

Driessen, A.

Fenske, M. R.

M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCormick, and D. H. Rank, Anal. Chem. 19, 700 (1947).
[CrossRef]

Garcia, M. V.

M. V. Garcia and M. I. Redondo, J. Chem. Edu. 62, 887 (1985).
[CrossRef]

Hewko, M.

Hill, W.

Inoue, Y.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, J. Lightwave Technol. 13, 447 (1995).
[CrossRef]

Ismail, N.

Ko, C.-T.

McCormick, R. H.

M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCormick, and D. H. Rank, Anal. Chem. 19, 700 (1947).
[CrossRef]

Oda, K.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, J. Lightwave Technol. 13, 447 (1995).
[CrossRef]

Pelletier, M. J.

Petrou, V.

Pollnau, M.

Quiggle, D.

M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCormick, and D. H. Rank, Anal. Chem. 19, 700 (1947).
[CrossRef]

Rank, D. H.

M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCormick, and D. H. Rank, Anal. Chem. 19, 700 (1947).
[CrossRef]

Redondo, M. I.

M. V. Garcia and M. I. Redondo, J. Chem. Edu. 62, 887 (1985).
[CrossRef]

Sengo, G.

Smit, M. K.

M. K. Smit and C. v. Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

M. K. Smit, Electron. Lett. 24, 385 (1988).
[CrossRef]

Sowa, M. G.

Sun, F.

Takahashi, H.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, J. Lightwave Technol. 13, 447 (1995).
[CrossRef]

Toba, H.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, J. Lightwave Technol. 13, 447 (1995).
[CrossRef]

Wiegand, R. V.

M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCormick, and D. H. Rank, Anal. Chem. 19, 700 (1947).
[CrossRef]

Wörhoff, K.

Anal. Chem.

M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, R. H. McCormick, and D. H. Rank, Anal. Chem. 19, 700 (1947).
[CrossRef]

Appl. Spectrosc.

Electron. Lett.

M. K. Smit, Electron. Lett. 24, 385 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. K. Smit and C. v. Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

J. Chem. Edu.

M. V. Garcia and M. I. Redondo, J. Chem. Edu. 62, 887 (1985).
[CrossRef]

J. Lightwave Technol.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, J. Lightwave Technol. 13, 447 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup used for the polarized Raman experiments. Inset: schematic of arrayed-waveguide grating (AWG) where FPR indicates the free propagation region.

Fig. 2
Fig. 2

Normalized Raman spectra of cyclohexane for parallel (triangles) and cross (dots) polarizations, measured with the AWG spectrometer; normalized sum of the two spectra (crosses). Unpolarized Raman spectrum (red line) measured with a conventional spectrometer, folded into diffraction order m = 41 of the AWG. Inset: original unfolded spectrum, extending over diffraction orders m = 39 , 40, 41, 42, and 43 of the AWG. The individual Raman peaks in both, folded and unfolded spectrum, are assigned by letters a–g. An additional peak at 1050 cm 1 is attributed to the laser line imaged at a higher-order ( m = 45 ).

Fig. 3
Fig. 3

Raman spectra of (a) sound and (b) carious tooth enamel for both parallel (triangles) and cross (dots) polarizations acquired with the AWG. The insets show spectra acquired with a conventional Raman microspectrometer.

Metrics