Abstract

We propose a method of reconfigurable radio frequency up/downconversion using a parametric optical loop mirror. The baseband optical signal can be unconverted to a carrier-suppressed radio-over-fiber signal at a wide range of frequencies without the help of optical filters to remove the optical carrier. Upconversion of up to 60GHz and downconversion from 40GHz for both single-channel and wavelength-division-multiplexing signals using the same setup are demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, J. Lightwave Technol. 25, 3452 (2007).
    [CrossRef]
  2. H. Chi and J. Yao, J. Lightwave Technol. 26, 2706 (2008).
    [CrossRef]
  3. H.-J. Kim, H.-J. Song, and J.-I. Song, IEEE Photon. Technol. Lett. 21, 1329 (2009).
    [CrossRef]
  4. J. Yu, G. K. Chang, Z. Jia, A. Chowdhury, M. H. Huang, H. C. Chien, Y. T. Hsueh, W. Jian, C. Liu, and Z. Dong, J. Lightwave Technol. 28, 2376 (2010).
    [CrossRef]
  5. C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, IEEE Photon. Technol. Lett. 20, 557 (2008).
    [CrossRef]
  6. C.-T. Lin, P.-T. Shih, J. J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).
    [CrossRef]
  7. H. Huang, X. Wu, J. Wang, J.-Y. Yang, and A. E. Willner, in Proceedings of the 37th European Conference and Exhibition on Optical Communication (ECOC), 2011 (IEEE, 2011), paper Mo1A4.
    [PubMed]
  8. K. Mori, T. Morioka, and M. Saruwatari, Opt. Lett. 20, 1424 (1995).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

H.-J. Kim, H.-J. Song, and J.-I. Song, IEEE Photon. Technol. Lett. 21, 1329 (2009).
[CrossRef]

2008 (3)

C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, IEEE Photon. Technol. Lett. 20, 557 (2008).
[CrossRef]

C.-T. Lin, P.-T. Shih, J. J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).
[CrossRef]

H. Chi and J. Yao, J. Lightwave Technol. 26, 2706 (2008).
[CrossRef]

2007 (1)

1995 (1)

Chang, G. K.

Chen, J. J.

C.-T. Lin, P.-T. Shih, J. J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).
[CrossRef]

Chi, H.

Chi, S.

C.-T. Lin, P.-T. Shih, J. J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).
[CrossRef]

Chien, H. C.

Chowdhury, A.

Dong, Z.

Ellinas, G.

Guo, Y.

C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, IEEE Photon. Technol. Lett. 20, 557 (2008).
[CrossRef]

Hsueh, Y. T.

Huang, H.

H. Huang, X. Wu, J. Wang, J.-Y. Yang, and A. E. Willner, in Proceedings of the 37th European Conference and Exhibition on Optical Communication (ECOC), 2011 (IEEE, 2011), paper Mo1A4.
[PubMed]

Huang, M. H.

Jia, Z.

Jian, W.

Kato, S.

C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, IEEE Photon. Technol. Lett. 20, 557 (2008).
[CrossRef]

Kim, H.-J.

H.-J. Kim, H.-J. Song, and J.-I. Song, IEEE Photon. Technol. Lett. 21, 1329 (2009).
[CrossRef]

Lin, C.-T.

C.-T. Lin, P.-T. Shih, J. J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).
[CrossRef]

Liu, C.

Mori, K.

Morioka, T.

Ong, L. C.

C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, IEEE Photon. Technol. Lett. 20, 557 (2008).
[CrossRef]

Park, C. S.

C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, IEEE Photon. Technol. Lett. 20, 557 (2008).
[CrossRef]

Peng, P.-C.

C.-T. Lin, P.-T. Shih, J. J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).
[CrossRef]

Saruwatari, M.

Shih, P.-T.

C.-T. Lin, P.-T. Shih, J. J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).
[CrossRef]

Song, H.-J.

H.-J. Kim, H.-J. Song, and J.-I. Song, IEEE Photon. Technol. Lett. 21, 1329 (2009).
[CrossRef]

Song, J.-I.

H.-J. Kim, H.-J. Song, and J.-I. Song, IEEE Photon. Technol. Lett. 21, 1329 (2009).
[CrossRef]

Wang, J.

H. Huang, X. Wu, J. Wang, J.-Y. Yang, and A. E. Willner, in Proceedings of the 37th European Conference and Exhibition on Optical Communication (ECOC), 2011 (IEEE, 2011), paper Mo1A4.
[PubMed]

Wang, Y.

C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, IEEE Photon. Technol. Lett. 20, 557 (2008).
[CrossRef]

Willner, A. E.

H. Huang, X. Wu, J. Wang, J.-Y. Yang, and A. E. Willner, in Proceedings of the 37th European Conference and Exhibition on Optical Communication (ECOC), 2011 (IEEE, 2011), paper Mo1A4.
[PubMed]

Wu, X.

H. Huang, X. Wu, J. Wang, J.-Y. Yang, and A. E. Willner, in Proceedings of the 37th European Conference and Exhibition on Optical Communication (ECOC), 2011 (IEEE, 2011), paper Mo1A4.
[PubMed]

Xue, W.-Q.

C.-T. Lin, P.-T. Shih, J. J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).
[CrossRef]

Yang, J.-Y.

H. Huang, X. Wu, J. Wang, J.-Y. Yang, and A. E. Willner, in Proceedings of the 37th European Conference and Exhibition on Optical Communication (ECOC), 2011 (IEEE, 2011), paper Mo1A4.
[PubMed]

Yao, J.

Yeo, Y. K.

C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, IEEE Photon. Technol. Lett. 20, 557 (2008).
[CrossRef]

Yu, J.

IEEE Photon. Technol. Lett. (3)

H.-J. Kim, H.-J. Song, and J.-I. Song, IEEE Photon. Technol. Lett. 21, 1329 (2009).
[CrossRef]

C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, IEEE Photon. Technol. Lett. 20, 557 (2008).
[CrossRef]

C.-T. Lin, P.-T. Shih, J. J. Chen, W.-Q. Xue, P.-C. Peng, and S. Chi, IEEE Photon. Technol. Lett. 20, 1027 (2008).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Lett. (1)

Other (1)

H. Huang, X. Wu, J. Wang, J.-Y. Yang, and A. E. Willner, in Proceedings of the 37th European Conference and Exhibition on Optical Communication (ECOC), 2011 (IEEE, 2011), paper Mo1A4.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of up/downconversion. The A, B, C, and D in (a) and (b) correspond to the locations of A, B, C, and D in the PALM (OC, optical coupler; DE, dispersion element; NE, nonlinear element).

Fig. 2
Fig. 2

Experimental setup of four-channel WDM up/downconversion: (a) setup for generating the CS-ROF signal, (b) setup for ROF signal demodulation, and (c) demodulated eye diagram.

Fig. 3
Fig. 3

(a) Optical spectra of upconverted signal from 20 to 60 GHz . (b) Eye diagrams of upconverted signals. (c) Optical spectra of a 40 GHz ROF signal (left), the downconverted signal (middle), and the eye diagram of downconverted signal (right).

Fig. 4
Fig. 4

Optical spectra, eye diagrams, and BER curves of four-channel WDM signal up/downconversion: (a), (b) upconversion and (c), (d) downconversion.

Fig. 5
Fig. 5

Output power of first-order FWM idlers ( S + and S ) and second-order FWM waves ( S 2 + and S 2 ) from port 2 of PALM as a function of the input signal’s wavelength. Dots and curves indicate the measured and simulated values, respectively.

Fig. 6
Fig. 6

(a) CSR and HSR of the upconverter in the optical and electrical domains. (CSR, carrier suppression ratio; HSR, harmonic suppression ratio) (b) Signal and pump power dependence of the optical upconverter in terms of BER penalty. (c) Power penalty of bias voltage drift of the MZM that generates two pumps.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P port 2 = P idler 1 cos Δ ϕ 2 ,
Δ β S + = β ( ω S + ω P 1 ω P 2 ) [ β ( ω S ) + β ( ω P 1 ) β ( ω P 2 ) ] .
Δ β S = β ( ω S ω P 1 + ω P 2 ) [ β ( ω S ) β ( ω P 1 ) + β ( ω P 2 ) ] ,

Metrics