Abstract

We experimentally demonstrate an all-passive fiber-based approach to prevent undesired beating during signal merging and detection. Beating occurs when optical signals of very close or the same wavelength are combined at a coupler and detected using a photodetector. Our approach is based on signal coupling from several single-mode fibers to a single piece of multimode fiber without interference, such that different signals propagate in different modes with different spatial positions inside the multimode fiber. We have investigated signal beating when the signals are coherent, partially coherent, or incoherent with each other. The measured results for single-mode to multimode coupling show signal beating is substantially reduced, resulting in widely opened eye diagrams and error-free bit error rate performance.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Legg, D. K. Hunter, I. Andonovic, and P. E. Barnsley, IEEE Photon. Technol. Lett. 6, 661 (1994).
    [CrossRef]
  2. A. Yariv, H. Blauvelt, and S.-W. Wu, J. Lightwave Technol. 10, 978 (1992).
    [CrossRef]
  3. T. Yoshino, M. R. Ali, and B. C. Sarker, J. Opt. Soc. Am. B 22, 328 (2005).
    [CrossRef]
  4. Y. Deng, K. Thompson, M. P. Fok, and P. R. Prucnal, IEEE Photon. Technol. Lett. 21, 981 (2009).
    [CrossRef]
  5. J. J. O’Reilly and C. J. Appleton, IEE Proc. Optoelectron. 142, 143 (1995).
    [CrossRef]
  6. L. A. Bui, K. S. Dayaratne, and A. Mitchell, in International Topical Meeting on Microwave Photonics (IEEE, 2009), pp. 1–3.
  7. B. E. A. Saleh and M. C. Teich, in Fundamentals of Photonics (Wiley, 2001).
  8. R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Wilner, IEEE Photon. Technol. Lett. 11, 134 (1999).
    [CrossRef]
  9. Y. J. Chai, I. Y. Krushchev, and I. H. White, Electron. Lett. 36, 1565 (2000).
    [CrossRef]
  10. M. P. Fok and C. Shu, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThJ5.
    [PubMed]
  11. H. R. Stuart, Science 289, 281 (2000).
    [CrossRef] [PubMed]
  12. F. Dubois, Ph. Emplit, and O. Hugon, Opt. Lett. 19, 433(1994).
    [CrossRef] [PubMed]
  13. L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, J. Lightwave Technol. 16, 324 (1998).
    [CrossRef]
  14. D. A. Chapman, Fiber Integr. Opt. 23, 375 (2004).
    [CrossRef]
  15. F. P. Payne, C. D. Hussey, and M. S. Yataki, Electron. Lett. 21, 461 (1985).
    [CrossRef]

2009 (1)

Y. Deng, K. Thompson, M. P. Fok, and P. R. Prucnal, IEEE Photon. Technol. Lett. 21, 981 (2009).
[CrossRef]

2005 (1)

2004 (1)

D. A. Chapman, Fiber Integr. Opt. 23, 375 (2004).
[CrossRef]

2000 (2)

Y. J. Chai, I. Y. Krushchev, and I. H. White, Electron. Lett. 36, 1565 (2000).
[CrossRef]

H. R. Stuart, Science 289, 281 (2000).
[CrossRef] [PubMed]

1999 (1)

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Wilner, IEEE Photon. Technol. Lett. 11, 134 (1999).
[CrossRef]

1998 (1)

1995 (1)

J. J. O’Reilly and C. J. Appleton, IEE Proc. Optoelectron. 142, 143 (1995).
[CrossRef]

1994 (2)

P. J. Legg, D. K. Hunter, I. Andonovic, and P. E. Barnsley, IEEE Photon. Technol. Lett. 6, 661 (1994).
[CrossRef]

F. Dubois, Ph. Emplit, and O. Hugon, Opt. Lett. 19, 433(1994).
[CrossRef] [PubMed]

1992 (1)

A. Yariv, H. Blauvelt, and S.-W. Wu, J. Lightwave Technol. 10, 978 (1992).
[CrossRef]

1985 (1)

F. P. Payne, C. D. Hussey, and M. S. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

Ali, M. R.

Andonovic, I.

P. J. Legg, D. K. Hunter, I. Andonovic, and P. E. Barnsley, IEEE Photon. Technol. Lett. 6, 661 (1994).
[CrossRef]

Appleton, C. J.

J. J. O’Reilly and C. J. Appleton, IEE Proc. Optoelectron. 142, 143 (1995).
[CrossRef]

Barnsley, P. E.

P. J. Legg, D. K. Hunter, I. Andonovic, and P. E. Barnsley, IEEE Photon. Technol. Lett. 6, 661 (1994).
[CrossRef]

Blauvelt, H.

A. Yariv, H. Blauvelt, and S.-W. Wu, J. Lightwave Technol. 10, 978 (1992).
[CrossRef]

Bui, L. A.

L. A. Bui, K. S. Dayaratne, and A. Mitchell, in International Topical Meeting on Microwave Photonics (IEEE, 2009), pp. 1–3.

Chai, Y. J.

Y. J. Chai, I. Y. Krushchev, and I. H. White, Electron. Lett. 36, 1565 (2000).
[CrossRef]

Chapman, D. A.

D. A. Chapman, Fiber Integr. Opt. 23, 375 (2004).
[CrossRef]

Cunningham, D. G.

Dayaratne, K. S.

L. A. Bui, K. S. Dayaratne, and A. Mitchell, in International Topical Meeting on Microwave Photonics (IEEE, 2009), pp. 1–3.

Deng, Y.

Y. Deng, K. Thompson, M. P. Fok, and P. R. Prucnal, IEEE Photon. Technol. Lett. 21, 981 (2009).
[CrossRef]

Dubois, F.

Emplit, Ph.

Fok, M. P.

Y. Deng, K. Thompson, M. P. Fok, and P. R. Prucnal, IEEE Photon. Technol. Lett. 21, 981 (2009).
[CrossRef]

M. P. Fok and C. Shu, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThJ5.
[PubMed]

Hayee, M. I.

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Wilner, IEEE Photon. Technol. Lett. 11, 134 (1999).
[CrossRef]

Hoanca, B.

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Wilner, IEEE Photon. Technol. Lett. 11, 134 (1999).
[CrossRef]

Hugon, O.

Hunter, D. K.

P. J. Legg, D. K. Hunter, I. Andonovic, and P. E. Barnsley, IEEE Photon. Technol. Lett. 6, 661 (1994).
[CrossRef]

Hussey, C. D.

F. P. Payne, C. D. Hussey, and M. S. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

Khosravani, R.

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Wilner, IEEE Photon. Technol. Lett. 11, 134 (1999).
[CrossRef]

Krushchev, I. Y.

Y. J. Chai, I. Y. Krushchev, and I. H. White, Electron. Lett. 36, 1565 (2000).
[CrossRef]

Legg, P. J.

P. J. Legg, D. K. Hunter, I. Andonovic, and P. E. Barnsley, IEEE Photon. Technol. Lett. 6, 661 (1994).
[CrossRef]

Mitchell, A.

L. A. Bui, K. S. Dayaratne, and A. Mitchell, in International Topical Meeting on Microwave Photonics (IEEE, 2009), pp. 1–3.

Nowell, M. C.

O’Reilly, J. J.

J. J. O’Reilly and C. J. Appleton, IEE Proc. Optoelectron. 142, 143 (1995).
[CrossRef]

Payne, F. P.

F. P. Payne, C. D. Hussey, and M. S. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

Prucnal, P. R.

Y. Deng, K. Thompson, M. P. Fok, and P. R. Prucnal, IEEE Photon. Technol. Lett. 21, 981 (2009).
[CrossRef]

Raddatz, L.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, in Fundamentals of Photonics (Wiley, 2001).

Sarker, B. C.

Shu, C.

M. P. Fok and C. Shu, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThJ5.
[PubMed]

Stuart, H. R.

H. R. Stuart, Science 289, 281 (2000).
[CrossRef] [PubMed]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, in Fundamentals of Photonics (Wiley, 2001).

Thompson, K.

Y. Deng, K. Thompson, M. P. Fok, and P. R. Prucnal, IEEE Photon. Technol. Lett. 21, 981 (2009).
[CrossRef]

White, I. H.

Y. J. Chai, I. Y. Krushchev, and I. H. White, Electron. Lett. 36, 1565 (2000).
[CrossRef]

L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, J. Lightwave Technol. 16, 324 (1998).
[CrossRef]

Wilner, A. E.

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Wilner, IEEE Photon. Technol. Lett. 11, 134 (1999).
[CrossRef]

Wu, S.-W.

A. Yariv, H. Blauvelt, and S.-W. Wu, J. Lightwave Technol. 10, 978 (1992).
[CrossRef]

Yariv, A.

A. Yariv, H. Blauvelt, and S.-W. Wu, J. Lightwave Technol. 10, 978 (1992).
[CrossRef]

Yataki, M. S.

F. P. Payne, C. D. Hussey, and M. S. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

Yoshino, T.

Electron. Lett. (2)

Y. J. Chai, I. Y. Krushchev, and I. H. White, Electron. Lett. 36, 1565 (2000).
[CrossRef]

F. P. Payne, C. D. Hussey, and M. S. Yataki, Electron. Lett. 21, 461 (1985).
[CrossRef]

Fiber Integr. Opt. (1)

D. A. Chapman, Fiber Integr. Opt. 23, 375 (2004).
[CrossRef]

IEE Proc. Optoelectron. (1)

J. J. O’Reilly and C. J. Appleton, IEE Proc. Optoelectron. 142, 143 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. J. Legg, D. K. Hunter, I. Andonovic, and P. E. Barnsley, IEEE Photon. Technol. Lett. 6, 661 (1994).
[CrossRef]

Y. Deng, K. Thompson, M. P. Fok, and P. R. Prucnal, IEEE Photon. Technol. Lett. 21, 981 (2009).
[CrossRef]

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Wilner, IEEE Photon. Technol. Lett. 11, 134 (1999).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Science (1)

H. R. Stuart, Science 289, 281 (2000).
[CrossRef] [PubMed]

Other (3)

L. A. Bui, K. S. Dayaratne, and A. Mitchell, in International Topical Meeting on Microwave Photonics (IEEE, 2009), pp. 1–3.

B. E. A. Saleh and M. C. Teich, in Fundamentals of Photonics (Wiley, 2001).

M. P. Fok and C. Shu, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThJ5.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup of the beating effect using different combiners for combining the two signals. Case I, SM–SM coupler; Case II, MM–MM coupler; Case III, SM–MM combiner. (b) Input optical signal before splitting. (c) Two signals (no path difference—coherent) are combined using a SM–SM coupler, (d) two signals (no path difference—coherent) are combined using a MM–MM coupler, (e) two signals (path difference of 20 m —partially coherent) signals are combined using a SM–SM coupler, and (f) two signals (path difference of 1700 m —incoherent) are combined using a SM–SM coupler.

Fig. 2
Fig. 2

Eye diagrams of (i) single channel and (ii)–(ix) combined signal using the SM–SM coupler; one of the signals is weaker than the other.

Fig. 3
Fig. 3

Measured eye diagrams of the combined signal using the SM–MM combiner: (a) only one channel is present, (b)–(d) two signals are combined, (b) no path difference—coherent, (c) path difference of 20 m —partially coherent, and (d) path difference of 1700 m —incoherent.

Fig. 4
Fig. 4

Error-free performance is obtained in the BER measurement for the combined channel using the SM–MM combiner.

Metrics