Abstract

We propose and experimentally demonstrate a dual-band optical filter based on a single microdisk resonator. An analytical model is built based on the transfer matrix method and is applied to simulate the properties of such a device. Competition and interference of the dual modes in the resonator lead to dual-band filtering with high isolation. As the finite-difference time-domain simulation illustrates, two low-order resonant modes can be effectively triggered by optimizing the waveguide width and spacing gap between the compact resonator and waveguides. In experiment, a double side-coupled microdisk resonator was fabricated on a nanophotonic silicon- on-insulator platform, and dual-band bandpass filtering is realized with an optical isolation higher than 20dB and an insertion loss lower than 2dB. The experimental results agree well with our modeling results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sun and L. Zhu, IEICE Trans. Electron. E89-C, 197(2006).
    [CrossRef]
  2. Y. C. Chang, C. H. Kao, M. H. Weng, and R. Y. Yang, IEEE Microwave Wireless Compon. Lett. 19, 780 (2009).
    [CrossRef]
  3. S. Emelett and R. Soref, Opt. Express 13, 7840 (2005).
    [CrossRef] [PubMed]
  4. Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, Appl. Phys. Lett. 93, 081113 (2008).
    [CrossRef]
  5. T. Wang, F. Liu, J. Wang, Y. Tian, Z. Zhang, T. Ye, M. Qiu, and Y. Su, J. Lightwave Technol. 27, 4734 (2009).
    [CrossRef]
  6. Y. F. Xiao, V. Gaddam, and L. Yang, Opt. Express 16, 12538 (2008).
    [CrossRef] [PubMed]
  7. T. Kato, Y. Goebuchi, and Y. Kokubun, Jpn. J. Appl. Phys. 45, 7741 (2006).
    [CrossRef]
  8. Y. Tian, L. Zhang, R. Ji, L. Yang, P. Zhou, H. Chen, J. Ding, W. Zhu, Y. Lu, L. Jia, Q. Fang, and M. Yu, Opt. Lett. 36, 1650 (2011).
    [CrossRef] [PubMed]
  9. L. Y. Mario, D. C. S. Lim, and M. K. Chin, IEEE Photon. Technol. Lett. 19, 1688 (2007).
    [CrossRef]
  10. A. Morand, Y. Zhang, B. Martin, K. P. Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J.-M. Fedeli, Opt. Express 14, 12814 (2006).
    [CrossRef] [PubMed]
  11. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, Opt. Express 18, 2127 (2010).
    [CrossRef]
  12. M. R. Watts, Opt. Lett. 35, 3231 (2010).
    [CrossRef] [PubMed]
  13. R. W. C. Vance and J. D. Love, IEE Proc. Optoelectron. 141, 231 (1994).
    [CrossRef]
  14. Q. Huang, X. Zhang, J. Xia, and J. Yu, Appl. Phys. B 105, 353 (2011).
    [CrossRef]

2011 (2)

2010 (2)

2009 (2)

T. Wang, F. Liu, J. Wang, Y. Tian, Z. Zhang, T. Ye, M. Qiu, and Y. Su, J. Lightwave Technol. 27, 4734 (2009).
[CrossRef]

Y. C. Chang, C. H. Kao, M. H. Weng, and R. Y. Yang, IEEE Microwave Wireless Compon. Lett. 19, 780 (2009).
[CrossRef]

2008 (2)

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

Y. F. Xiao, V. Gaddam, and L. Yang, Opt. Express 16, 12538 (2008).
[CrossRef] [PubMed]

2007 (1)

L. Y. Mario, D. C. S. Lim, and M. K. Chin, IEEE Photon. Technol. Lett. 19, 1688 (2007).
[CrossRef]

2006 (3)

A. Morand, Y. Zhang, B. Martin, K. P. Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J.-M. Fedeli, Opt. Express 14, 12814 (2006).
[CrossRef] [PubMed]

T. Kato, Y. Goebuchi, and Y. Kokubun, Jpn. J. Appl. Phys. 45, 7741 (2006).
[CrossRef]

S. Sun and L. Zhu, IEICE Trans. Electron. E89-C, 197(2006).
[CrossRef]

2005 (1)

1994 (1)

R. W. C. Vance and J. D. Love, IEE Proc. Optoelectron. 141, 231 (1994).
[CrossRef]

Adibi, A.

Amans, D.

Atabaki, A. H.

Benech, P.

Chang, Y. C.

Y. C. Chang, C. H. Kao, M. H. Weng, and R. Y. Yang, IEEE Microwave Wireless Compon. Lett. 19, 780 (2009).
[CrossRef]

Chen, H.

Chin, M. K.

L. Y. Mario, D. C. S. Lim, and M. K. Chin, IEEE Photon. Technol. Lett. 19, 1688 (2007).
[CrossRef]

Ding, J.

Emelett, S.

Fang, Q.

Fedeli, J.-M.

Gaddam, V.

Goebuchi, Y.

T. Kato, Y. Goebuchi, and Y. Kokubun, Jpn. J. Appl. Phys. 45, 7741 (2006).
[CrossRef]

Hadji, E.

Hosseini, E. S.

Huang, Q.

Q. Huang, X. Zhang, J. Xia, and J. Yu, Appl. Phys. B 105, 353 (2011).
[CrossRef]

Huy, K. P.

Ji, R.

Jia, L.

Kao, C. H.

Y. C. Chang, C. H. Kao, M. H. Weng, and R. Y. Yang, IEEE Microwave Wireless Compon. Lett. 19, 780 (2009).
[CrossRef]

Kato, T.

T. Kato, Y. Goebuchi, and Y. Kokubun, Jpn. J. Appl. Phys. 45, 7741 (2006).
[CrossRef]

Kokubun, Y.

T. Kato, Y. Goebuchi, and Y. Kokubun, Jpn. J. Appl. Phys. 45, 7741 (2006).
[CrossRef]

Li, Q.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

Lim, D. C. S.

L. Y. Mario, D. C. S. Lim, and M. K. Chin, IEEE Photon. Technol. Lett. 19, 1688 (2007).
[CrossRef]

Liu, F.

Love, J. D.

R. W. C. Vance and J. D. Love, IEE Proc. Optoelectron. 141, 231 (1994).
[CrossRef]

Lu, Y.

Mario, L. Y.

L. Y. Mario, D. C. S. Lim, and M. K. Chin, IEEE Photon. Technol. Lett. 19, 1688 (2007).
[CrossRef]

Martin, B.

Morand, A.

Qiu, M.

Soltani, M.

Soref, R.

Su, Y.

Sun, S.

S. Sun and L. Zhu, IEICE Trans. Electron. E89-C, 197(2006).
[CrossRef]

Tian, Y.

Vance, R. W. C.

R. W. C. Vance and J. D. Love, IEE Proc. Optoelectron. 141, 231 (1994).
[CrossRef]

Verbert, J.

Wang, J.

Wang, T.

Watts, M. R.

Weng, M. H.

Y. C. Chang, C. H. Kao, M. H. Weng, and R. Y. Yang, IEEE Microwave Wireless Compon. Lett. 19, 780 (2009).
[CrossRef]

Xia, J.

Q. Huang, X. Zhang, J. Xia, and J. Yu, Appl. Phys. B 105, 353 (2011).
[CrossRef]

Xiao, Y. F.

Yang, L.

Yang, R. Y.

Y. C. Chang, C. H. Kao, M. H. Weng, and R. Y. Yang, IEEE Microwave Wireless Compon. Lett. 19, 780 (2009).
[CrossRef]

Ye, T.

Yegnanarayanan, S.

Yu, J.

Q. Huang, X. Zhang, J. Xia, and J. Yu, Appl. Phys. B 105, 353 (2011).
[CrossRef]

Yu, M.

Zhang, L.

Zhang, X.

Q. Huang, X. Zhang, J. Xia, and J. Yu, Appl. Phys. B 105, 353 (2011).
[CrossRef]

Zhang, Y.

Zhang, Z.

Zhou, P.

Zhu, L.

S. Sun and L. Zhu, IEICE Trans. Electron. E89-C, 197(2006).
[CrossRef]

Zhu, W.

Appl. Phys. B (1)

Q. Huang, X. Zhang, J. Xia, and J. Yu, Appl. Phys. B 105, 353 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, Appl. Phys. Lett. 93, 081113 (2008).
[CrossRef]

IEE Proc. Optoelectron. (1)

R. W. C. Vance and J. D. Love, IEE Proc. Optoelectron. 141, 231 (1994).
[CrossRef]

IEEE Microwave Wireless Compon. Lett. (1)

Y. C. Chang, C. H. Kao, M. H. Weng, and R. Y. Yang, IEEE Microwave Wireless Compon. Lett. 19, 780 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Y. Mario, D. C. S. Lim, and M. K. Chin, IEEE Photon. Technol. Lett. 19, 1688 (2007).
[CrossRef]

IEICE Trans. Electron. (1)

S. Sun and L. Zhu, IEICE Trans. Electron. E89-C, 197(2006).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

T. Kato, Y. Goebuchi, and Y. Kokubun, Jpn. J. Appl. Phys. 45, 7741 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of a dual-mode MDR symmetrically side coupled with double waveguides.

Fig. 2
Fig. 2

(a) Amplitude and (b) phase responses of the through field, dropping field, field dropped from WGM 1 , and field dropped from WGM 2 .

Fig. 3
Fig. 3

(a) Through and (b) drop transmission of MDR-DBOFs with various W and gaps and (c) the field distributions corresponding to positions a, b, c, and d in the transmission spectrum, respectively.

Fig. 4
Fig. 4

SEM image of the fabricated side-coupled MDR; inset: cross section of the coupling region.

Fig. 5
Fig. 5

Normalized transmission at the (a) through and (b) drop ports for our MDR-DBOF.

Fig. 6
Fig. 6

Detailed transmission spectra and curve fit of the dual bands near 1515 nm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ b 0 b 1 b 2 ] = [ t 0 j k 1 j k 2 j k 1 t 1 k c j k 2 k c t 2 ] [ a 0 a 1 a 2 ] ,
| t 0 j k 1 j k 2 j k 1 t 1 k c j k 2 k c t 2 | = 1 , t 0 2 + k 1 2 + k 2 2 = 1 , t 1 2 + k 1 2 + k c 2 = 1 , t 2 2 + k 2 2 + k c 2 = 1.
a 1 = b 1 α 1 e j φ 1 t 1 + b 2 ( α 1 α 2 e j φ 1 e j φ 2 ) 1 / 2 ( k c ) , a 2 = b 2 α 2 e j φ 2 t 2 + b 1 ( α 1 α 2 e j φ 1 e j φ 2 ) 1 / 2 ( k c ) ,
S t = b 0 a 0 , S d = b 1 a 0 ( α 1 e j φ 1 ) 1 / 2 ( j k 1 ) + b 2 a 0 ( α 2 e j φ 2 ) 1 / 2 ( j k 2 ) .

Metrics