Abstract

We proposed and experimentally demonstrated wavelength division (de)multiplexers (WDMs) utilizing the wavelength dispersive nature of self-imaging multimode interferometers. Proof-of-principle devices fabricated on the silicon-on-insulator platform operated as 4-channel WDMs with a free spectral range of >90nm, an averaging cross talk of <20dB for a 1nm band, and an insertion loss of <2.0dB. The potential for higher channel counts and smaller channel wavelength spacing was also predicted. This type of WDM is easy to design and fabricate. The underlying concept is applicable to all planar waveguide platforms.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
    [CrossRef]
  2. J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. G. Baets, J. Lightwave Technol. 25, 1269 (2007).
    [CrossRef]
  3. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, Opt. Express 17, 5502 (2009).
    [CrossRef] [PubMed]
  4. S. L. Tsao, H. C. Guo, and C. W. Tsai, Opt. Commun. 232, 371 (2004).
    [CrossRef]
  5. J. Xiao and X. Sun, Opt. Commun. 281, 600 (2008).
    [CrossRef]
  6. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]
  7. http://www.photond.com/products/fimmprop.htm.

2009 (1)

2008 (1)

J. Xiao and X. Sun, Opt. Commun. 281, 600 (2008).
[CrossRef]

2007 (1)

2006 (1)

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

2004 (1)

S. L. Tsao, H. C. Guo, and C. W. Tsai, Opt. Commun. 232, 371 (2004).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Baets, R. G.

J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. G. Baets, J. Lightwave Technol. 25, 1269 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

Bogaerts, W.

J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. G. Baets, J. Lightwave Technol. 25, 1269 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

Brouckaert, J.

Chen, P.

Dumon, P.

J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. G. Baets, J. Lightwave Technol. 25, 1269 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

Geng, M.

Guo, H. C.

S. L. Tsao, H. C. Guo, and C. W. Tsai, Opt. Commun. 232, 371 (2004).
[CrossRef]

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

Jia, L.

Liu, Y.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Sun, X.

J. Xiao and X. Sun, Opt. Commun. 281, 600 (2008).
[CrossRef]

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

Thourhout, D. V.

J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. G. Baets, J. Lightwave Technol. 25, 1269 (2007).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

Tsai, C. W.

S. L. Tsao, H. C. Guo, and C. W. Tsai, Opt. Commun. 232, 371 (2004).
[CrossRef]

Tsao, S. L.

S. L. Tsao, H. C. Guo, and C. W. Tsai, Opt. Commun. 232, 371 (2004).
[CrossRef]

Wang, T.

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

Xiao, J.

J. Xiao and X. Sun, Opt. Commun. 281, 600 (2008).
[CrossRef]

Yang, L.

Zhang, L.

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, IEEE J. Sel. Top. Quantum Electron. 12, 1394 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (2)

S. L. Tsao, H. C. Guo, and C. W. Tsai, Opt. Commun. 232, 371 (2004).
[CrossRef]

J. Xiao and X. Sun, Opt. Commun. 281, 600 (2008).
[CrossRef]

Opt. Express (1)

Other (1)

http://www.photond.com/products/fimmprop.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Design of the WDM device. (a) The layout, (b) simulated field profile of a single channel WDM device at a peak transmission wavelength of λ = 1550 nm . The inclination angle θ is 0.2 rad , although it is not manifested in the figure.

Fig. 2
Fig. 2

SEM images (top view) of a fabricated 4-channel WDM device at the interfaces (a) between input and multimode waveguides and (b) between output and multimode waveguides.

Fig. 3
Fig. 3

Transmission spectra of the 4-channel WDM devices at a temperature of 20 ° C . (a) Measured spectra of a θ = 0.2 rad device, (b) measured spectra of a θ = 0.3 rad device, (c) simulated spectra of a θ = 0.2 rad device, (d) simulated spectra of a θ = 0.3 rad device.

Fig. 4
Fig. 4

Simulated transmission spectra of an 8-channel WDM device at a temperature of 20 ° C .

Tables (1)

Tables Icon

Table 1 Design Parameters for the 4-Channel WDM Devices

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L = 4 m n eff b 2 λ ,
d L = 4 n eff ( b λ ) 2 d λ .
δ λ min = 1 4 n eff ( λ b ) 2 a + x min sin θ ,
β p = 2 n eff π λ { 1 1 2 ( p λ 2 n eff b ) 2 } .
β p = 2 n eff π λ { 1 ( p λ 2 n eff b ) 2 } 1 / 2 .

Metrics