Abstract

We present what we believe to be the first results that obtained with the recursive least square zonal slope predictor working on an open-loop liquid-crystal adaptive optics system operating on astronomical implementation at visible and near infrared wavelength on a 1.23m telescope. The system produces substantially better results than a direct open-loop correction based on previous measurement. A 27% relative gain in full-width at half-maximum and 30% relative gain in Strehl ratio are obtained.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Schwartz, G. Baum, and E. N. Ribak, J. Opt. Soc. Am. A 11, 444 (1994).
    [CrossRef]
  2. G. J. Aitken and D. McGaughey, in Proceedings of Topical Meeting on Adaptive Optics (1995), Vol. 54, p. 89.
  3. W. Wild, Opt. Lett. 21, 1433 (1996).
    [CrossRef] [PubMed]
  4. B. L. Ellerbroek and T. A. Rhoadarmer, Math. Comput. Modell. 33, 145 (2001).
    [CrossRef]
  5. L. Poyneer and J. Véran, J. Opt. Soc. Am. A 25, 1486 (2008).
    [CrossRef]
  6. M. Jorgenson and G. Aitken, Opt. Lett. 17, 466 (1992).
    [CrossRef] [PubMed]
  7. D. Montera, B. Welsh, M. Roggemann, and D. Ruck, Appl. Opt. 36, 675 (1997).
    [CrossRef] [PubMed]
  8. P. McGuire, T. Rhoadarmer, H. Coy, J. Angel, and M. Lloyd-Hart, Proc. SPIE 4007, 682 (2000).
    [CrossRef]
  9. J. S. Gibson, C.-C. Chang, and B. L. Ellerbroek, Appl. Opt. 39, 2525 (2000).
    [CrossRef]
  10. J. D. Barchers, Appl. Opt. 43, 3708 (2004).
    [CrossRef] [PubMed]
  11. S.Haykin, ed., Adaptive Filtering Theory (Prentice Hall, 2002).
  12. C. Dessenne, P. Y. Madec, and G. Rousset, Opt. Lett. 22, 1535 (1997).
    [CrossRef]
  13. C. Dessenne, P. Y. Madec, and G. Rousset, Opt. Lett. 24, 339 (1999).
    [CrossRef]
  14. C. Liu, L. Hu, Q. Mu, Z. Cao, and L. Xuan, Appl. Opt. 50, 82 (2011).
    [CrossRef] [PubMed]

2011 (1)

2008 (1)

2004 (1)

2001 (1)

B. L. Ellerbroek and T. A. Rhoadarmer, Math. Comput. Modell. 33, 145 (2001).
[CrossRef]

2000 (2)

P. McGuire, T. Rhoadarmer, H. Coy, J. Angel, and M. Lloyd-Hart, Proc. SPIE 4007, 682 (2000).
[CrossRef]

J. S. Gibson, C.-C. Chang, and B. L. Ellerbroek, Appl. Opt. 39, 2525 (2000).
[CrossRef]

1999 (1)

1997 (2)

1996 (1)

1994 (1)

1992 (1)

Aitken, G.

Aitken, G. J.

G. J. Aitken and D. McGaughey, in Proceedings of Topical Meeting on Adaptive Optics (1995), Vol. 54, p. 89.

Angel, J.

P. McGuire, T. Rhoadarmer, H. Coy, J. Angel, and M. Lloyd-Hart, Proc. SPIE 4007, 682 (2000).
[CrossRef]

Barchers, J. D.

Baum, G.

Cao, Z.

Chang, C.-C.

Coy, H.

P. McGuire, T. Rhoadarmer, H. Coy, J. Angel, and M. Lloyd-Hart, Proc. SPIE 4007, 682 (2000).
[CrossRef]

Dessenne, C.

Ellerbroek, B. L.

B. L. Ellerbroek and T. A. Rhoadarmer, Math. Comput. Modell. 33, 145 (2001).
[CrossRef]

J. S. Gibson, C.-C. Chang, and B. L. Ellerbroek, Appl. Opt. 39, 2525 (2000).
[CrossRef]

Gibson, J. S.

Hu, L.

Jorgenson, M.

Liu, C.

Lloyd-Hart, M.

P. McGuire, T. Rhoadarmer, H. Coy, J. Angel, and M. Lloyd-Hart, Proc. SPIE 4007, 682 (2000).
[CrossRef]

Madec, P. Y.

McGaughey, D.

G. J. Aitken and D. McGaughey, in Proceedings of Topical Meeting on Adaptive Optics (1995), Vol. 54, p. 89.

McGuire, P.

P. McGuire, T. Rhoadarmer, H. Coy, J. Angel, and M. Lloyd-Hart, Proc. SPIE 4007, 682 (2000).
[CrossRef]

Montera, D.

Mu, Q.

Poyneer, L.

Rhoadarmer, T.

P. McGuire, T. Rhoadarmer, H. Coy, J. Angel, and M. Lloyd-Hart, Proc. SPIE 4007, 682 (2000).
[CrossRef]

Rhoadarmer, T. A.

B. L. Ellerbroek and T. A. Rhoadarmer, Math. Comput. Modell. 33, 145 (2001).
[CrossRef]

Ribak, E. N.

Roggemann, M.

Rousset, G.

Ruck, D.

Schwartz, C.

Véran, J.

Welsh, B.

Wild, W.

Xuan, L.

Supplementary Material (1)

» Media 1: AVI (3579 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The two steps of the RLS prediction algorithm: the study step and the prediction step. The frame of subapertures showed here is only a fragment of that of the SHWFS frame.

Fig. 2
Fig. 2

The sixty-eighth slope of turbulence, the corresponding direct corrections, predictions (a) and the deviations between the turbulence and the two corrections (b) are plotted as functions of the sample number.

Fig. 3
Fig. 3

Convergence of the predictor parameters for the sixty-eighth slope.

Fig. 4
Fig. 4

The root-mean-square slope error versus the WFS slope index (the first half slopes are x slopes and the last half slopes are y slopes).

Fig. 5
Fig. 5

The image and its profile chart of the star Polaris along y axis (a) without correction, (b) with direct correction, (c) with RLS zonal slope predictor (the exposure time is 302 ms ) (Media 1).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s ͡ = i = 0 k 1 j = 0 m 1 ω i j s i j .
u ̲ ( n ) = [ s 00 s 0 , M 1 s 10 s K 1 , M 1 ] n T .
ω ̲ ( n 1 ) = [ ω 00 ω 0 , M 1 ω 10 ω K 1 , M 1 ] n 1 T .
k ̲ ( n ) = P ( n 1 ) u ̲ ( n ) λ + u ̲ ( n ) T P ( n 1 ) u ̲ ( n ) , P ( n ) = λ 1 P ( n 1 ) λ 1 k ̲ ( n ) u ̲ ( n ) T P ( n 1 ) , α ( n ) = s ( n + N ) u ̲ ( n ) T ω ̲ ( n 1 ) , ω ̲ ( n ) = ω ̲ ( n 1 ) + k ̲ ( n ) α ( n ) ,
ω ̲ ( 0 ) = 0 , P ( 0 ) = δ I ,
s ͡ ( n + 2 N ) = u ̲ ( n + N ) T ω ̲ ( n ) .

Metrics