Abstract

We demonstrate sub-100-as timing jitter optical pulse trains generated from free-running, 77.6MHz repetition-rate, mode-locked Er-fiber lasers. At 0.002(±0.001)ps2 net cavity dispersion, the rms timing jitter is 70as (224as) integrated from 10kHz (1kHz) to 38.8MHz offset frequency, when measured by a 24as resolution balanced optical cross correlator. To our knowledge, this result corresponds to the lowest rms timing jitter measured from any mode-locked fiber lasers so far. The measured result also agrees fairly well with the Namiki–Haus analytic model of quantum-limited timing jitter in stretched-pulse fiber lasers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
    [CrossRef]
  2. H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
    [CrossRef]
  3. S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
    [CrossRef]
  4. R. Paschotta, Appl. Phys. B 79, 163 (2004).
    [CrossRef]
  5. J. Kim and F. X. Kärtner, Laser Photon. Rev. 4, 432 (2010).
    [CrossRef]
  6. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, Opt. Lett. 32, 3519 (2007).
    [CrossRef] [PubMed]
  7. J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, Opt. Lett. 35, 3522 (2010).
    [CrossRef] [PubMed]
  8. Y. Song, K. Jung, and J. Kim, Opt. Lett. 36, 1761 (2011).
    [CrossRef] [PubMed]
  9. A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kärtner, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4.
  10. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, Opt. Express 19, 14518 (2011).
    [CrossRef] [PubMed]
  11. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, Opt. Lett. 36, 1578 (2011).
    [CrossRef] [PubMed]
  12. “PSI sapphire loaded cavity oscillator,” http://psi.com.au/media/pdfs/SLCO-BCS Brochure.pdf.
  13. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, Opt. Lett. 24, 1774 (1999).
    [CrossRef]
  14. D. Derickson, Fiber Optic Test and Measurement(Prentice-Hall, 1998).

2011

2010

2008

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

2007

2004

R. Paschotta, Appl. Phys. B 79, 163 (2004).
[CrossRef]

1999

1997

S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
[CrossRef]

1993

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Benedick, A.

A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kärtner, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4.

Chen, J.

Cox, J.

Cox, J. A.

Demirbas, U.

A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kärtner, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4.

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement(Prentice-Hall, 1998).

Diddams, S. A.

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Fujimoto, J. G.

A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kärtner, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4.

Hartl, I.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Haus, H. A.

S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
[CrossRef]

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Jasapara, J.

Johnson, T. A.

Jung, K.

Kärtner, F. X.

J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, Opt. Lett. 35, 3522 (2010).
[CrossRef] [PubMed]

J. Kim and F. X. Kärtner, Laser Photon. Rev. 4, 432 (2010).
[CrossRef]

J. Kim, J. Chen, J. Cox, and F. X. Kärtner, Opt. Lett. 32, 3519 (2007).
[CrossRef] [PubMed]

A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kärtner, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4.

Kim, C.

Kim, H.

Kim, J.

Kobayashi, Y.

Li, D.

A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kärtner, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4.

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Mecozzi, A.

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Namiki, S.

S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
[CrossRef]

Nejadmalayeri, A. H.

Nicholson, J. W.

Nugent-Glandorf, L.

Omenetto, F. G.

Paschotta, R.

R. Paschotta, Appl. Phys. B 79, 163 (2004).
[CrossRef]

Rudolph, W.

Schibli, T. R.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Song, Y.

Taylor, A. J.

Ye, J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Appl. Phys. B

R. Paschotta, Appl. Phys. B 79, 163 (2004).
[CrossRef]

IEEE J. Quantum Electron.

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
[CrossRef]

Laser Photon. Rev.

J. Kim and F. X. Kärtner, Laser Photon. Rev. 4, 432 (2010).
[CrossRef]

Nat. Photon.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, Nat. Photon. 2, 355 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

D. Derickson, Fiber Optic Test and Measurement(Prentice-Hall, 1998).

A. Benedick, U. Demirbas, D. Li, J. G. Fujimoto, and F. X. Kärtner, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CFK4.

“PSI sapphire loaded cavity oscillator,” http://psi.com.au/media/pdfs/SLCO-BCS Brochure.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Experimental setup for timing jitter characterization and optimization of mode-locked Er-fiber lasers. BOC, balanced optical cross correlator; BPF, 1 GHz bandpass filter; Er, Er-gain fiber; ISO, isolator; PD, photodetector; PS, phase shifter; HWP, half-wave plate; LD, 980 nm laser diode; PI, proportional-integral; WDM, 980/1550 wavelength-division multiplexing coupler. The net cavity dispersion of each laser is controlled by changing the length of single-mode fiber (labeled with X). (b) Optical spectra and interferometric autocorrelation of lasers (dashed black curves, Laser 1; solid gray curves, Laser 2).

Fig. 2
Fig. 2

(a) Best timing jitter spectral density result of mode-locked Er-fiber lasers. The integrated timing jitter is 70 as ( 224 as ) when integrated from 10 kHz ( 1 kHz ) to 38.8 MHz offset frequency. (b) BOC photodetector noise floor. (c) Projected RIN-coupled timing jitter. (d) Equivalent timing jitter spectral density of SLCO [12] for comparison. (e) Best timing jitter spectral density of mode-locked Ti:sapphire lasers [9] for comparison. (f) Predicted timing jitter range from the Namiki–Haus analytic model based on measured laser parameters.

Tables (1)

Tables Icon

Table 1 Measured and Typically Used Laser Parameters for Namiki–Haus Model

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β = tan { 1 2 [ arg ( α j ) arg ( g Ω g + j D ) ] } ,

Metrics