Abstract

A chemically modified poly(fluorene-alt-benzothiadiazole) (PFBT) polymer film is reported to exhibit high two-photon absorbing capability and chemical/physical stability upon the action of high-power laser pulses of 780nm wavelength and 160fs duration. A nonlinear transmission measurement is conducted by varying the input intensity from 20 to 600GW/cm2, the corresponding nonlinear transmission of a 70μm thick film is reduced from 0.8 to 0.18, indicating a superior optical limiting behavior. In the meantime, intensity fluctuation of laser pulses can be significantly reduced after passing through the same film sample. Based on the intensity-dependent nonlinear attenuation mechanism, a straightforward optical reshaping effect on spatio-temporal profiles of the laser pulses has also been demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
    [CrossRef] [PubMed]
  2. E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, J. Opt. Soc. Am. B 5, 1980 (1988).
    [CrossRef]
  3. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhards, J. C. Bhatt, R. McKellar, and A. G. Dillard, Opt. Lett. 20, 435 (1995).
    [CrossRef] [PubMed]
  4. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, and J. W. Perry, Opt. Lett. 22, 1843 (1997).
    [CrossRef]
  5. G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, Nature 415, 767 (2002).
    [CrossRef] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  7. D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
    [CrossRef] [PubMed]
  8. S. Maruo, O. Nakamura, and S. Kawata, Opt. Lett. 22, 132 (1997).
    [CrossRef] [PubMed]
  9. H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, J. Am. Chem. Soc. 132, 17346 (2010).
    [CrossRef]
  10. G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
    [CrossRef] [PubMed]

2010

H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, J. Am. Chem. Soc. 132, 17346 (2010).
[CrossRef]

2008

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

2004

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

2002

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, Nature 415, 767 (2002).
[CrossRef] [PubMed]

1997

1995

1990

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1989

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

1988

Baev, A.

H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, J. Am. Chem. Soc. 132, 17346 (2010).
[CrossRef]

Bhatt, J. C.

Dai, J.

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Dillard, A. G.

Dombroskie, A. G.

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

Ehrlich, J. E.

Hagan, D. J.

He, G. S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, Nature 415, 767 (2002).
[CrossRef] [PubMed]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhards, J. C. Bhatt, R. McKellar, and A. G. Dillard, Opt. Lett. 20, 435 (1995).
[CrossRef] [PubMed]

Hu, Z.-Y.

Jee, H.

H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, J. Am. Chem. Soc. 132, 17346 (2010).
[CrossRef]

Kannan, R.

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

Kawata, S.

Lee, I.-Y. S.

Lin, T.-C.

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, Nature 415, 767 (2002).
[CrossRef] [PubMed]

Liu, S.

H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, J. Am. Chem. Soc. 132, 17346 (2010).
[CrossRef]

Mansour, K.

Marder, S. R.

Markowicz, P. P.

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, Nature 415, 767 (2002).
[CrossRef] [PubMed]

Maruo, S.

McKellar, R.

Nakamura, O.

Oh, H. S.

H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, J. Am. Chem. Soc. 132, 17346 (2010).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

Perry, J. W.

Prasad, P. N.

H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, J. Am. Chem. Soc. 132, 17346 (2010).
[CrossRef]

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, Nature 415, 767 (2002).
[CrossRef] [PubMed]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhards, J. C. Bhatt, R. McKellar, and A. G. Dillard, Opt. Lett. 20, 435 (1995).
[CrossRef] [PubMed]

Reinhards, B. A.

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

Röckel, H.

Soileau, M. J.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Swihart, M. T.

H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, J. Am. Chem. Soc. 132, 17346 (2010).
[CrossRef]

Tan, L.-S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

Vaia, R. A.

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

Van Stryland, E. W.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Wu, X. L.

Wu, Y. Y.

Xu, G. C.

Zheng, Q.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

Chem. Rev.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

H. S. Oh, S. Liu, H. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, J. Am. Chem. Soc. 132, 17346 (2010).
[CrossRef]

J. Chem. Phys.

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, J. Chem. Phys. 120, 5275 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Nature

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, Nature 415, 767 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Science

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Linear absorption spectra of two DOMP-PFBT films with different thickness; the chemical structure of the sample medium is shown in the top-right corner. (b) Two-photon excited upconversion emission spectrum; the measured dependence of emission intensity on the input pulse energy is shown in the top-left.

Fig. 2
Fig. 2

(a) Measured nonlinear transmission versus the input pulse energy (intensity). (b) Characteristic output/input curve of the optical limiting performance. In both cases the dashed line represents the best fitting curve based on Eq. (1) with the parameter of β = 4.41 cm / GW .

Fig. 3
Fig. 3

Optical stabilization performance: intensity fluctuations for (a) input laser pulses and (b) transmitted laser pulses.

Fig. 4
Fig. 4

Temporal reshaping of modulated laser pulses: measured waveforms for (a) input pulse series and (b) transmitted pulse series.

Fig. 5
Fig. 5

Far-field intensity distributions of a transmitted grids-diffracted laser field, measured at three different input pulse energy levels: (a)  0.07 μJ , (b)  2.6 μJ , (c)  4.5 μJ .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( I 0 ) = T 0 T ( I 0 ) = T 0 ln ( 1 + β L I 0 ) β L I 0 .

Metrics