Abstract

We experimentally demonstrate the first integrated temporal Fourier transformer based on a linearly chirped Bragg grating waveguide written in silica glass with a femtosecond laser. The operation is based on mapping the energy spectrum of the input optical signal to the output temporal waveform by making use of first-order chromatic dispersion. The device operates in reflection, has a bandwidth of 10nm, and can be used for incident temporal waveforms as long as 20ps. Experimental results, obtained through both temporal oscilloscope traces and Fourier transform spectral interferometry, display a successful Fourier transformation of in-phase and out-of-phase pairs of input optical pulses, and demonstrate the correct functionality of the device for both amplitude and phase of the temporal output.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
    [CrossRef]
  2. Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
    [CrossRef]
  3. M. A. Muriel, J. Azaña, and A. Carballar, Opt. Lett. 24, 1 (1999).
    [CrossRef]
  4. F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
    [CrossRef]
  5. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  6. D. R. Solli, J. Chou, and B. Jalali, Nat. Photon. 2, 48 (2008).
    [CrossRef]
  7. M. H. Asghari, Y. Park, and J. Azaña, Opt. Express 18, 16526 (2010).
    [CrossRef] [PubMed]
  8. S. Thomas, A. Malacarne, F. Fresi, L. Potí, A. Bogoni, and J. Azaña, J. Lightwave Technol. 28, 1832 (2010).
    [CrossRef]
  9. J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, Electron. Lett. 35, 2223 (1999).
    [CrossRef]
  10. H. Zhang and P. R. Herman, IEEE Photon. Technol. Lett. 21, 277 (2009).
    [CrossRef]
  11. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  12. K. W. DeLong and R. Trebino, J. Opt. Soc. Am. A 11, 2429 (1994).
    [CrossRef]
  13. C. Iaconis and I. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  14. Y. Park, M. Scaffardi, A. Malacarne, L. Potí, and J. Azaña, Opt. Lett. 35, 2502 (2010).
    [CrossRef] [PubMed]

2010 (3)

2009 (1)

H. Zhang and P. R. Herman, IEEE Photon. Technol. Lett. 21, 277 (2009).
[CrossRef]

2008 (1)

D. R. Solli, J. Chou, and B. Jalali, Nat. Photon. 2, 48 (2008).
[CrossRef]

2003 (1)

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

1999 (3)

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, Electron. Lett. 35, 2223 (1999).
[CrossRef]

M. A. Muriel, J. Azaña, and A. Carballar, Opt. Lett. 24, 1 (1999).
[CrossRef]

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

1998 (1)

1997 (1)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

1995 (1)

1994 (2)

K. W. DeLong and R. Trebino, J. Opt. Soc. Am. A 11, 2429 (1994).
[CrossRef]

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

Asghari, M. H.

Azaña, J.

Bhushan, A. S.

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Bogoni, A.

Carballar, A.

Chan, L. Y.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

Chen, L. R.

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, Electron. Lett. 35, 2223 (1999).
[CrossRef]

Cheriaux, G.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, Nat. Photon. 2, 48 (2008).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

DeLong, K. W.

Fresi, F.

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Herman, P. R.

H. Zhang and P. R. Herman, IEEE Photon. Technol. Lett. 21, 277 (2009).
[CrossRef]

Iaconis, C.

Jalali, B.

D. R. Solli, J. Chou, and B. Jalali, Nat. Photon. 2, 48 (2008).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Joffre, M.

Kolner, B. H.

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

Lepetit, L.

Malacarne, A.

Muriel, M. A.

M. A. Muriel, J. Azaña, and A. Carballar, Opt. Lett. 24, 1 (1999).
[CrossRef]

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, Electron. Lett. 35, 2223 (1999).
[CrossRef]

Park, Y.

Potí, L.

Scaffardi, M.

Smith, P. W. E.

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, Electron. Lett. 35, 2223 (1999).
[CrossRef]

Solli, D. R.

D. R. Solli, J. Chou, and B. Jalali, Nat. Photon. 2, 48 (2008).
[CrossRef]

Thomas, S.

Tong, Y. C.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

Trebino, R.

Tsang, H. K.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

Walmsley, I.

Zhang, H.

H. Zhang and P. R. Herman, IEEE Photon. Technol. Lett. 21, 277 (2009).
[CrossRef]

Electron. Lett. (2)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, Electron. Lett. 33, 983 (1997).
[CrossRef]

J. Azaña, L. R. Chen, M. A. Muriel, and P. W. E. Smith, Electron. Lett. 35, 2223 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. H. Kolner, IEEE J. Quantum Electron. 30, 1951 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Zhang and P. R. Herman, IEEE Photon. Technol. Lett. 21, 277 (2009).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

D. R. Solli, J. Chou, and B. Jalali, Nat. Photon. 2, 48 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b) Reflectance spectra of the LCBGW: (a) measured ( R meas ), (b) simulated ( R sim ). (c) Simulated group delay of the LCBGW. (d)–(f) Simulated incident spectra (green dashed curves) and reflected temporal waveforms (black solid curves): (d), (f) for in-phase and (e) π-phase-shifted incident pulses. The simulation results shown in Figs. 1d, 1e, 1f correspond to the experimental data presented in Figs. 3a, 3b, 3c, respectively.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Incident (solid red curve) and reflected (dashed green curve) spectra superimposed on the scaled oscilloscope traces of the output temporal waveforms (solid black curve), obtained with a 5 nm OBPF: (a) for the in-phase incident pulses and (b) for the π-phase-shifted incident pulses. (c) Spectrum (dashed green curve) and the scaled temporal waveform (solid black curve) of the reflected in-phase double- pulse signal reconstructed through FTSI, obtained with a 3 nm OBPF. (d) The phase of the reflected signal reconstructed through FTSI.

Metrics