Abstract

A low-loss, compact, and highly sensitive optical fiber curvature sensor is presented. The device consists of two identical low-loss fused fiber tapers in tandem separated by a distance L. When the optical fiber is kept straight and fixed, no interference pattern appears in the transmitted spectrum. However, when the device is bent, the symmetry of the straight taper is lost and the first taper couples light into the cladding modes. In the second taper, a fraction of the total light guided by the cladding modes will be coupled back to the fundamental mode, producing an interference pattern in the transmitted spectrum. As the fiber device is bent, visibility of the interference fringes grows, reaching values close to 1. The dynamic range of the device can be tailored by the proper selection of taper diameter and separation between tapers. The effects of temperature and refractive index of the external medium on the response of the curvature sensor is also discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. J. Gu, Opt. Lett. 23, 509 (1998).
    [CrossRef]
  2. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, Opt. Lett. 31, 2960 (2006).
    [CrossRef] [PubMed]
  3. Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
    [CrossRef]
  4. Y. Li, L. Chen, E. Harris, and X. Bao, IEEE Photon. Technol. Lett. 22, 1750 (2010).
    [CrossRef]
  5. O. Frazão, J. Villegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, Opt. Lett. 32, 3074 (2007).
    [CrossRef] [PubMed]
  6. W. Du, H. Tam, M. Liu, and X. Tao, Proc. SPIE 3330, 284(1998).
    [CrossRef]
  7. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proceedings J. Optoelectronics 138, 343 (1991).
    [CrossRef]
  8. L. Yao, T. A. Birks, and J. C. Knight, Opt. Express 17, 2962(2009).
    [CrossRef] [PubMed]
  9. E. H. Hecht, Optics (Addison-Wesley, 1987).

2010 (1)

Y. Li, L. Chen, E. Harris, and X. Bao, IEEE Photon. Technol. Lett. 22, 1750 (2010).
[CrossRef]

2009 (1)

2008 (1)

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

2007 (1)

2006 (1)

1998 (2)

X. J. Gu, Opt. Lett. 23, 509 (1998).
[CrossRef]

W. Du, H. Tam, M. Liu, and X. Tao, Proc. SPIE 3330, 284(1998).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proceedings J. Optoelectronics 138, 343 (1991).
[CrossRef]

Araújo, F. M.

Bao, X.

Y. Li, L. Chen, E. Harris, and X. Bao, IEEE Photon. Technol. Lett. 22, 1750 (2010).
[CrossRef]

Barnes, J.

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Birks, T. A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proceedings J. Optoelectronics 138, 343 (1991).
[CrossRef]

Bock, W.

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Caldas, P.

Chen, L.

Y. Li, L. Chen, E. Harris, and X. Bao, IEEE Photon. Technol. Lett. 22, 1750 (2010).
[CrossRef]

Du, W.

W. Du, H. Tam, M. Liu, and X. Tao, Proc. SPIE 3330, 284(1998).
[CrossRef]

Fabris, J. L.

Falate, R.

Farahi, F.

Ferreira, L. A.

Fraser, J. M.

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Frazão, O.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proceedings J. Optoelectronics 138, 343 (1991).
[CrossRef]

Greig, P.

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Gu, X. J.

Harris, E.

Y. Li, L. Chen, E. Harris, and X. Bao, IEEE Photon. Technol. Lett. 22, 1750 (2010).
[CrossRef]

Hecht, E. H.

E. H. Hecht, Optics (Addison-Wesley, 1987).

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proceedings J. Optoelectronics 138, 343 (1991).
[CrossRef]

Knight, J. C.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proceedings J. Optoelectronics 138, 343 (1991).
[CrossRef]

Li, Y.

Y. Li, L. Chen, E. Harris, and X. Bao, IEEE Photon. Technol. Lett. 22, 1750 (2010).
[CrossRef]

Liu, M.

W. Du, H. Tam, M. Liu, and X. Tao, Proc. SPIE 3330, 284(1998).
[CrossRef]

Loock, H.

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proceedings J. Optoelectronics 138, 343 (1991).
[CrossRef]

Oleschuk, R. D.

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Santos, J. L.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proceedings J. Optoelectronics 138, 343 (1991).
[CrossRef]

Tam, H.

W. Du, H. Tam, M. Liu, and X. Tao, Proc. SPIE 3330, 284(1998).
[CrossRef]

Tao, X.

W. Du, H. Tam, M. Liu, and X. Tao, Proc. SPIE 3330, 284(1998).
[CrossRef]

Tian, Z.

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Villegas, J.

Yam, S. S.

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Yao, L.

IEE Proceedings J. Optoelectronics (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, IEE Proceedings J. Optoelectronics 138, 343 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Tian, S. S. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Y. Li, L. Chen, E. Harris, and X. Bao, IEEE Photon. Technol. Lett. 22, 1750 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

W. Du, H. Tam, M. Liu, and X. Tao, Proc. SPIE 3330, 284(1998).
[CrossRef]

Other (1)

E. H. Hecht, Optics (Addison-Wesley, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) MZFI based on two tapers and the experimental setup for the bending test. (b) Fiber transmission spectrum before tapering (continuous line) and after fabrication of the first (dashed line) and second (dotted line) tapers. Tapers are identical, with ρ w = 60 μm , and separated by a distance L = 10 mm .

Fig. 2
Fig. 2

MZFI transmission spectra when tapers are separated by a distance of 5 (upper graphs) and 40 mm (bottom graphs) for three different bending radii.

Fig. 3
Fig. 3

Relationship between taper separation and interference fringe separation of the two-taper MZFIs fabricated. Inset, inverse of taper separation versus interference fringe separation.

Fig. 4
Fig. 4

Fringe visibility versus curvature radius of MZFIs formed with (a) two tapers with ρ w = 60 μm and the L = 5 (squares), 10 (circles), and 40 mm (diamonds), (b) two tapers with ρ w = 60 (circles) and 50 μm (up-triangles) and L = 10 mm .

Fig. 5
Fig. 5

Transmission spectra of the MZFI formed with two tapers with ρ w = 60 μm and L = 10 mm for three different RIs.

Metrics