Abstract

High-resolution three-dimensional (3D) microscopic imaging requires the use of short wavelengths. Quantitative 3D imaging techniques, such as digital holographic microscopy, require interference between the object beam and a known reference background for the extraction of phase information. At shorter wavelengths, due to short coherence lengths, it may be difficult to implement a two-beam off-axis setup. Thus, a single-beam technique, which provides complete phase information, may be better suited for short wavelengths. This Letter describes the development of a quantitative microscopy technique at 193nm using multiple intensity samplings and phase retrieval.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P.Ferraro, A.Wax, Z.Zalevsky, eds., Coherent Light Microscopy (Springer, 2011).
    [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [CrossRef]
  3. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
    [CrossRef] [PubMed]
  4. D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, Opt. Lett. 35, 4066 (2010).
    [CrossRef] [PubMed]
  5. Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
    [CrossRef]
  6. F. Dubois, L. Joannes, and J.-C. Legros, Appl. Opt. 38, 7085(1999).
    [CrossRef]
  7. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, Opt. Express 18, 14159 (2010).
    [CrossRef] [PubMed]
  8. G. Pedrini, F. Zhang, and W. Osten, Appl. Opt. 46, 7829(2007).
    [CrossRef] [PubMed]
  9. J. R. Fienup, Appl. Opt. 21, 2758 (1982).
    [CrossRef] [PubMed]
  10. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett. 77, 2961 (1996).
    [CrossRef] [PubMed]
  11. J. M. Rodenburg, and H. M. L. Faulkner, Appl. Phys. Lett. 85, 4795 (2004).
    [CrossRef]
  12. A. Anand and B. Javidi, Opt. Lett. 35, 766 (2010).
    [CrossRef] [PubMed]
  13. A. Anand, V. K. Chhaniwal, and B. Javidi, J. Biomed. Opt. 16, 060503 (2011).
    [CrossRef] [PubMed]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

2011 (1)

A. Anand, V. K. Chhaniwal, and B. Javidi, J. Biomed. Opt. 16, 060503 (2011).
[CrossRef] [PubMed]

2010 (3)

2007 (1)

2006 (1)

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

2005 (1)

2004 (1)

J. M. Rodenburg, and H. M. L. Faulkner, Appl. Phys. Lett. 85, 4795 (2004).
[CrossRef]

1999 (2)

1996 (1)

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett. 77, 2961 (1996).
[CrossRef] [PubMed]

1982 (1)

Anand, A.

Barnea, Z.

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett. 77, 2961 (1996).
[CrossRef] [PubMed]

Bevilacqua, F.

Chhaniwal, V. K.

A. Anand, V. K. Chhaniwal, and B. Javidi, J. Biomed. Opt. 16, 060503 (2011).
[CrossRef] [PubMed]

Colomb, T.

Cookson, D. F.

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett. 77, 2961 (1996).
[CrossRef] [PubMed]

Cuche, E.

Daneshpanah, M.

Depeursinge, C.

Dubois, F.

Eigenthaler, U.

Emery, Y.

Faridian, A.

Faulkner, H. M. L.

J. M. Rodenburg, and H. M. L. Faulkner, Appl. Phys. Lett. 85, 4795 (2004).
[CrossRef]

Fienup, J. R.

Frauel, Y.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Gureyev, T. E.

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett. 77, 2961 (1996).
[CrossRef] [PubMed]

Hirscher, M.

Hopp, D.

Javidi, B.

A. Anand, V. K. Chhaniwal, and B. Javidi, J. Biomed. Opt. 16, 060503 (2011).
[CrossRef] [PubMed]

A. Anand and B. Javidi, Opt. Lett. 35, 766 (2010).
[CrossRef] [PubMed]

D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, Opt. Lett. 35, 4066 (2010).
[CrossRef] [PubMed]

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Joannes, L.

Legros, J.-C.

Magistretti, P. J.

Marquet, P.

Matoba, O.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Naughton, T.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Nugent, K. A.

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett. 77, 2961 (1996).
[CrossRef] [PubMed]

Osten, W.

Paganin, D.

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett. 77, 2961 (1996).
[CrossRef] [PubMed]

Pedrini, G.

Rappaz, B.

Rodenburg, J. M.

J. M. Rodenburg, and H. M. L. Faulkner, Appl. Phys. Lett. 85, 4795 (2004).
[CrossRef]

Shin, D.

Tahajuerce, E.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Zhang, F.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. M. Rodenburg, and H. M. L. Faulkner, Appl. Phys. Lett. 85, 4795 (2004).
[CrossRef]

J. Biomed. Opt. (1)

A. Anand, V. K. Chhaniwal, and B. Javidi, J. Biomed. Opt. 16, 060503 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, Phys. Rev. Lett. 77, 2961 (1996).
[CrossRef] [PubMed]

Proc. IEEE (1)

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

P.Ferraro, A.Wax, Z.Zalevsky, eds., Coherent Light Microscopy (Springer, 2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Single-beam quantitative phase microscope operating in the deep UV.

Fig. 2
Fig. 2

(a) SEM image of the object and (b) reconstructed intensity profile at the image plane using the described technique (rectangular box approximately corresponds to SEM image).

Fig. 3
Fig. 3

Intensity profile along the line shown in Fig. 2b. It can be seen that the structures with the size 1 μm and separated by 1 μm are well resolved.

Fig. 4
Fig. 4

Reconstructed phase profile at the image pane.

Fig. 5
Fig. 5

(a) 3D phase profile of the marked rectangular region in Fig. 4. (b) Its cross-sectional profile along the horizontal direction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U ( x , y , z + Δ z ) = U ^ ( f x , f y , z ) G × exp [ i 2 π ( f x x + f y y ) ] d f x d f y ,

Metrics