Abstract

The normalized Born approximation has been suggested as a ratiometric method in fluorescence molecular tomography (FMT) applications, to account for heterogeneity variations. The method enabled practical inversions, as it offered fluorescence reconstruction accuracy over a wide range of absorption heterogeneity, while also accounting for unknown experimental factors, such as the various system gains and losses. Yet it was noted that scattering variations affect the robustness and accuracy. Herein we decompose the effects of absorption and scattering and capitalize on the recent development of hybrid FMT/x-ray computed tomography imaging methods to proposed amendments to the method, which improve the overall accuracy of the approach.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Arridge, Inverse Probl. 15, R41 (1999).
    [CrossRef]
  2. S. Davis, H. Dehghani, J. Wang, S. Jiang, B. Pogue, and K. Paulsen, Opt. Express 15, 4066 (2007).
    [CrossRef] [PubMed]
  3. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, Nat. Med. 8, 757 (2002).
    [CrossRef] [PubMed]
  4. V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893(2001).
    [CrossRef]
  5. A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 24, 1377 (2005).
    [CrossRef] [PubMed]
  6. W. Bangerth, R. Hartmann, and G. Kanschat, ACM Trans. Math. Softw. 33, 24 (2007).
    [CrossRef]
  7. R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
    [CrossRef]
  8. Z. Wang and A. C. Bovik, IEEE Signal Proc. Lett. 9, 81(2002).
    [CrossRef]
  9. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Opt. Express 18, 7835 (2010).
    [CrossRef] [PubMed]
  10. D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, J. Opt. Soc. Am. A 26, 919 (2009).
    [CrossRef]

2010 (2)

R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
[CrossRef]

Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, Opt. Express 18, 7835 (2010).
[CrossRef] [PubMed]

2009 (1)

2007 (2)

2005 (1)

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 24, 1377 (2005).
[CrossRef] [PubMed]

2002 (2)

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, Nat. Med. 8, 757 (2002).
[CrossRef] [PubMed]

Z. Wang and A. C. Bovik, IEEE Signal Proc. Lett. 9, 81(2002).
[CrossRef]

2001 (1)

1999 (1)

S. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

Ale, A.

R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
[CrossRef]

Arridge, S.

S. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

Bangerth, W.

W. Bangerth, R. Hartmann, and G. Kanschat, ACM Trans. Math. Softw. 33, 24 (2007).
[CrossRef]

Barber, W. C.

Bovik, A. C.

Z. Wang and A. C. Bovik, IEEE Signal Proc. Lett. 9, 81(2002).
[CrossRef]

Bremer, C.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, Nat. Med. 8, 757 (2002).
[CrossRef] [PubMed]

Brooks, D.

Davis, S.

Dehghani, H.

Freyer, M.

R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
[CrossRef]

Gulsen, G.

Hartmann, R.

W. Bangerth, R. Hartmann, and G. Kanschat, ACM Trans. Math. Softw. 33, 24 (2007).
[CrossRef]

Hyde, D.

Iwanczyk, J. S.

Jiang, S.

Kanschat, G.

W. Bangerth, R. Hartmann, and G. Kanschat, ACM Trans. Math. Softw. 33, 24 (2007).
[CrossRef]

Lin, Y.

Miller, E.

Nalcioglu, O.

Ntziachristos, V.

R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
[CrossRef]

D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, J. Opt. Soc. Am. A 26, 919 (2009).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 24, 1377 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, Nat. Med. 8, 757 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893(2001).
[CrossRef]

Paulsen, K.

Pogue, B.

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 24, 1377 (2005).
[CrossRef] [PubMed]

Roeck, W.

Sarantopoulos, A.

R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
[CrossRef]

Schulz, R.

R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
[CrossRef]

D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, J. Opt. Soc. Am. A 26, 919 (2009).
[CrossRef]

Soehngen, E.

R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
[CrossRef]

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 24, 1377 (2005).
[CrossRef] [PubMed]

Tung, C.-H.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, Nat. Med. 8, 757 (2002).
[CrossRef] [PubMed]

Wang, J.

Wang, Z.

Z. Wang and A. C. Bovik, IEEE Signal Proc. Lett. 9, 81(2002).
[CrossRef]

Weissleder, R.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, Nat. Med. 8, 757 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893(2001).
[CrossRef]

Zientkowska, M.

R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
[CrossRef]

ACM Trans. Math. Softw. (1)

W. Bangerth, R. Hartmann, and G. Kanschat, ACM Trans. Math. Softw. 33, 24 (2007).
[CrossRef]

IEEE Signal Proc. Lett. (1)

Z. Wang and A. C. Bovik, IEEE Signal Proc. Lett. 9, 81(2002).
[CrossRef]

IEEE Trans. Med. Imaging (2)

R. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, IEEE Trans. Med. Imaging 29, 465 (2010).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 24, 1377 (2005).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Med. (1)

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, Nat. Med. 8, 757 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

nBorn inversion from simulations on a cylinder consisting of two halves—the left of varying optical properties. Each half contains a fluorescent inclusion of strength 1 / 10 . (a) Transverse slice with homogeneous properties μ s = 15 / cm , μ a = 0.3 / cm in both half-cylinders (shown by dark gray and white). (b) Reconstruction when scattering in the left half is increased to μ s = 30 / cm . (c) Graph summarizing the maximum reconstructed fluorescence in the left half-cylinder as a function of scattering and absorption variation.

Fig. 2
Fig. 2

Experimental nBorn-based reconstructions of cylindrical silicone phantoms consisting of two half- cylinders with different scattering properties μ s 1 , μ s 2 . Each half has a cavity containing a 150 nM fluorescent solution. (a) Transverse CT slice through a homogeneous phantom ( μ s 1 = μ s 2 = 3 / cm , μ a = 0.1 / cm ) and reconstructed fluorochrome concentrations (b) Similar representation as in (a) with a μ s 2 = 6 / cm in the right half. (c) Ratio between reconstructed concentrations in the two half cylinders as a function of μ s 2 .

Fig. 3
Fig. 3

nBorn inversion from simulations on a mouse thorax geometry, containing one large and two small fluorescent inclusions in the lungs. Top row: Reconstructions obtained from simulated measurements with (a) 50% reduction, (b) exact, and (c) 50% increase of the lung μ s compared to the model used for reconstruction. (d) Reconstruction quality declines sharply with modification of scattering in the lung segment (see text) (e) Reconstructions are rectified by incorporating the modified optical properties in a corrected forward model.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Φ b G ( r f , r s ) G ( r d , r f ) G ( r d , r s ) μ s exp ( 3 μ a μ s R corr ) ,

Metrics