Abstract

A method based on higher-order cross-correlation is proposed to fetch the Doppler information on flow velocity within areas under low signal-to-noise ratio (SNR) by spectral domain optical coherence tomography. The proposed method is theoretically developed and validated by measurement of a moving mirror with known velocities. Standard deviations of flow velocities of the mirror under different SNRs are determined by the proposed method and compared with those by the modified phase-resolved method. Measurement of flowing particles within a glass capillary is also conducted, and Doppler flow velocity maps of the glass capillary are reconstructed by both methods. All experimental results demonstrate that the proposed method can significantly suppress noise, thus rendering it suitable for flow measurement under low SNR cases.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
    [CrossRef]
  2. R. Leitgeb, C. Hitzenberger, and A. Fercher, Opt. Express 11, 889 (2003).
    [CrossRef] [PubMed]
  3. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
    [CrossRef]
  4. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, Opt. Express 13, 3931(2005).
    [CrossRef] [PubMed]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, Opt. Express 12, 2977 (2004).
    [CrossRef] [PubMed]
  6. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, Opt. Lett. 33, 1425 (2008).
    [CrossRef] [PubMed]
  7. Y. Wang and R. Wang, Opt. Lett. 35, 3538 (2010).
    [CrossRef] [PubMed]
  8. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, Opt. Express 16, 6008(2008).
    [CrossRef] [PubMed]
  9. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, Opt. Lett. 33, 1530 (2008).
    [CrossRef] [PubMed]
  10. E. Jonathan, J. Enfield, and M. Leahy, J. Biophotonics 4, 583 (2011).
    [CrossRef] [PubMed]
  11. V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, Opt. Lett. 27, 34 (2002).
    [CrossRef]
  12. Y. Kobayashi, IEEE Trans. Commun. 30, 1117 (1982).
    [CrossRef]
  13. A. W. Houghton and C. D. Reeve, IEE Proc. Radar Sonar Navig. 142, 286 (1995).
    [CrossRef]
  14. K. Wang, Z. Ding, C. Wang, J. Meng, M. Chen, and L. Xu, Opt. Express 17, 12121 (2009).
    [CrossRef] [PubMed]
  15. J. Meng, Z. Ding, J. Li, K. Wang, and T. Wu, Opt. Express 18, 1261 (2010).
    [CrossRef] [PubMed]

2011 (1)

E. Jonathan, J. Enfield, and M. Leahy, J. Biophotonics 4, 583 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (1)

2008 (3)

2005 (1)

2004 (1)

2003 (1)

2002 (1)

2000 (1)

1995 (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

A. W. Houghton and C. D. Reeve, IEE Proc. Radar Sonar Navig. 142, 286 (1995).
[CrossRef]

1982 (1)

Y. Kobayashi, IEEE Trans. Commun. 30, 1117 (1982).
[CrossRef]

Bajraszewski, T.

Bouma, B.

Bouma, B. E.

Cable, A.

Cense, B.

Chen, M.

Chen, Z.

de Boer, J.

de Boer, J. F.

Ding, Z.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Enfield, J.

E. Jonathan, J. Enfield, and M. Leahy, J. Biophotonics 4, 583 (2011).
[CrossRef] [PubMed]

Fercher, A.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Houghton, A. W.

A. W. Houghton and C. D. Reeve, IEE Proc. Radar Sonar Navig. 142, 286 (1995).
[CrossRef]

Izatt, J. A.

Jiang, J.

Jonathan, E.

E. Jonathan, J. Enfield, and M. Leahy, J. Biophotonics 4, 583 (2011).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Khurana, M.

Kobayashi, Y.

Y. Kobayashi, IEEE Trans. Commun. 30, 1117 (1982).
[CrossRef]

Kowalczyk, A.

Leahy, M.

E. Jonathan, J. Enfield, and M. Leahy, J. Biophotonics 4, 583 (2011).
[CrossRef] [PubMed]

Leitgeb, R.

Leung, M. K. K.

Li, J.

Mariampillai, A.

Meng, J.

Moriyama, E. H.

Mujat, M.

Munce, N. R.

Nelson, J. S.

Park, B. H.

Pierce, M. C.

Reeve, C. D.

A. W. Houghton and C. D. Reeve, IEE Proc. Radar Sonar Navig. 142, 286 (1995).
[CrossRef]

Rollins, A. M.

Saxer, C.

Standish, B. A.

Szkulmowska, A.

Szkulmowski, M.

Tearney, G.

Tearney, G. J.

Vitkin, I. A.

Wang, C.

Wang, K.

Wang, R.

Wang, Y.

Westphal, V.

Wilson, B. C.

Wojtkowski, M.

Wu, T.

Xiang, S.

Xu, L.

Yang, V. X. D.

Yazdanfar, S.

Yun, S. H.

Zhao, Y.

IEE Proc. Radar Sonar Navig. (1)

A. W. Houghton and C. D. Reeve, IEE Proc. Radar Sonar Navig. 142, 286 (1995).
[CrossRef]

IEEE Trans. Commun. (1)

Y. Kobayashi, IEEE Trans. Commun. 30, 1117 (1982).
[CrossRef]

J. Biophotonics (1)

E. Jonathan, J. Enfield, and M. Leahy, J. Biophotonics 4, 583 (2011).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43 (1995).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured Doppler frequency shifts of the mirror under different SNRs (left, SNR = 1.3 ; right, SNR = 12.47 ). M = 40 . (a), (b) Driving signal; (c), (d) measured Doppler frequency shifts by the third-order cross-correlation method; (e), (f) measured Doppler frequency shifts by the modified phase-resolved method.

Fig. 2
Fig. 2

Standard deviation of Doppler frequency shift calculated by the modified phase-resolved method (blue dashed curve) and the third-order cross-correlation method (red solid curve) as a function of SNR. M = 40 .

Fig. 3
Fig. 3

(a) Doppler imaging of a glass capillary with flowing solution inside; M = 40 . (b), (d), (f) Measured Doppler frequency shifts by the third-order cross-correlation method; (c), (e), (g) measured Doppler frequency shifts by the modified phase-resolved method; (d), (e) lateral Doppler frequency shifts distribution at the depth of the black line; (f), (g) axial Doppler frequency shift distribution at the lateral position of the black line.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( k , t ) = 2 S ( k ) 0 a z cos ( 2 n k ( z + v z t ) ) d z .
I ( z , t ) = [ Γ z a z ] exp ( i 2 n k v z t ) = A z exp ( i 2 n k v z t ) ,
I n ( z , t ) = A z exp ( i 2 n k v z t ) + B z w n ( t ) , n = 1 , 2 N ,
R ( τ ) = [ ( I 1 I 2 ) ( I 3 I 4 ) ] [ ( I 5 I 6 ) ( I 7 I 8 ) ] = A z exp ( i 2 n v z τ ) + B z w n ( τ ) ,
A z = A z 8 sin 4 ( 4 n k v z T ) sin 2 ( 8 n k v z T ) sin ( 16 n k v z T ) 16 ( 4 n k v z T ) 7 .
f D = tan 1 ( Im [ j = 1 8 M 7 1 R j R j + 1 * ] Re [ j = 1 8 M 7 1 R j R j + 1 * ] ) / ( 2 π d t ) .
STD = 1 2 π d t 1 SNR .
A z B z = M 3 ( A Z B Z ) 4 4 ( 1 + 2 ( A Z B Z ) 2 ) .

Metrics