Abstract

Zernike phase contrast microscopy is extended and combined with a phase-shifting mechanism to perform quantitative phase measurements of microscopic objects. Dozens of discrete point light sources on a ring are constructed for illumination. For each point light source, three different levels of point-like phase steps are designed, which are alternatively located along a ring on a silica plate to perform phase retardation on the undiffracted (dc) component of the object waves. These three levels of the phase steps are respectively selected by rotating the silica plate. Thus, quantitative evaluation of phase specimens can be performed via phase-shifting mechanism. The proposed method has low “halo” and “shade-off” effects, low coherent noise level, and high lateral resolution due to the improved illumination scheme.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, Physica 9, 686 (1942).
    [CrossRef]
  2. C. S. Anderson, Appl. Opt. 34, 7474 (1995).
    [CrossRef] [PubMed]
  3. H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
    [CrossRef]
  4. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, Opt. Lett. 29, 2503(2004).
    [CrossRef] [PubMed]
  5. N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, Appl. Opt. 46, 1836 (2007).
    [CrossRef] [PubMed]
  6. J. Glückstad and P. C. Mogensen, Appl. Opt. 40, 268 (2001).
    [CrossRef]
  7. S. Wolfling, E. Lanzmann, M. Israeli, N. Ben-Yosef, and Y. Arieli, J. Opt. Soc. Am. A 22, 2498 (2005).
    [CrossRef]
  8. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 16, 19821 (2008).
    [CrossRef] [PubMed]
  9. R. Liang, J. K. Erwin, and M. Mansuripur, Appl. Opt. 39, 2152 (2000).
    [CrossRef]
  10. T. Otaki, Opt. Rev. 7, 119 (2000).
    [CrossRef]
  11. A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 214, 334 (2004).
    [CrossRef] [PubMed]
  12. V. Mico, Z. Zalevsky, and J. García, Opt. Express 14, 5168(2006).
    [CrossRef] [PubMed]
  13. J. W. Goodman, Speckle Phenomena in Optics (Roberts, 2007).

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2004 (2)

2001 (1)

2000 (2)

1995 (1)

1994 (1)

H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
[CrossRef]

1942 (1)

F. Zernike, Physica 9, 686 (1942).
[CrossRef]

Anderson, C. S.

Arieli, Y.

Badizadegan, K.

Ben-Yosef, N.

Bernet, S.

Choi, W.

Dasari, R. R.

Deflores, L. P.

Erwin, J. K.

Feld, M. S.

García, J.

Glückstad, J.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics (Roberts, 2007).

Ikeda, T.

Israeli, M.

Iwai, H.

Jesacher, A.

Kadono, H.

H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
[CrossRef]

Lanzmann, E.

Liang, R.

Lue, N.

Mansuripur, M.

Maurer, C.

Mico, V.

Mogensen, P. C.

Ng, A. Y. M.

A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 214, 334 (2004).
[CrossRef] [PubMed]

Ogusu, M.

H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
[CrossRef]

Otaki, T.

T. Otaki, Opt. Rev. 7, 119 (2000).
[CrossRef]

Popescu, G.

Ritsch-Marte, M.

See, C. W.

A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 214, 334 (2004).
[CrossRef] [PubMed]

Somekh, M. G.

A. Y. M. Ng, C. W. See, and M. G. Somekh, J. Microsc. 214, 334 (2004).
[CrossRef] [PubMed]

Toyooka, S.

H. Kadono, M. Ogusu, and S. Toyooka, Opt. Commun. 110, 391 (1994).
[CrossRef]

Vaughan, J. C.

Wolfling, S.

Zalevsky, Z.

Zernike, F.

F. Zernike, Physica 9, 686 (1942).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration for phase-shifting Zernike phase contrast microscopy. MO 1 and MO 2 , microscope objectives with magnification 10 × and NA = 0.3 (Plan-Neofluar 10 × / 0.3 , Carl Zeiss company); L 1 - L 8 , achromatic lenses with focal lengths f 1 = 30 mm , f 2 = f 3 = 100 mm , f 4 = f 5 = f 6 = f 7 = 80 mm , f 8 = 400 mm ; DOE axicon, diffraction-type axicon with period 7.91 μm and duty cycle 50%.

Fig. 2
Fig. 2

Structures of the amplitude mask (a) and the phase plate (b) for the extended Zernike phase contrast microscopy. The diameter and width of the ring in both are 4.75 mm and 20 μm , respectively.

Fig. 3
Fig. 3

Measurement result of a microlens array. (a)–(c), phase contrast images with phase-shift of 0, π / 2 , and π / 2 between the undiffracted and diffracted components. (d) 3D reconstructed phase distribution of the microlens array.

Fig. 4
Fig. 4

Measurement of an area of phase ring with the proposed setup and the microscopic Mach–Zehnder interferometer. (a) Measured phase distribution by the proposed setup. (b) Comparison on the profiles obtained from both methods.

Fig. 5
Fig. 5

Resolution test with an amplitude grating. (a) Under on-axis illumination. (b) Under multi-direction off-axis illumination.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ I 1 ( x , y ) = | O 0 + O d | 2 , I 2 ( x , y ) = | O 0 exp ( j π / 2 ) + O d | 2 , I 3 ( x , y ) = | O 0 exp ( j π / 2 ) + O d | 2 .
O d ( x , y ) = ( 1 j ) ( I 1 I 2 ) + ( 1 + j ) ( I 1 I 3 ) 4 | O 0 | .

Metrics