Abstract

The evolution of the dark currents and breakdown at elevated temperatures of up to 450K are studied using thin AlAsSb avalanche regions. While the dark currents increase rapidly as the temperature is increased, the avalanche gain is shown to only have a weak temperature dependence. Temperature coefficients of breakdown voltage of 0.93 and 1.93mV/K were obtained from the diodes of 80 and 230nm avalanche regions (i-regions), respectively. These values are significantly lower than for other available avalanche materials at these temperatures. The wavelength dependence of multiplication characteristics of AlAsSb p-i-n diodes has also been investigated, and it was found that the ionization coefficients for electrons and holes are comparable within the electric field and wavelength ranges measured.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Jackson, D. Phelan, A. P. Morrison, R. M. Redfern, and A. Mathewson, Proc. SPIE 4650, 55 (2002).
    [CrossRef]
  2. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Opt. Express 18, 27938 (2010).
    [CrossRef]
  3. D. J. Massey, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 53, 2328 (2006).
    [CrossRef]
  4. C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 50, 2027 (2003).
    [CrossRef]
  5. J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, IEEE J. Quantum Electron. 41, 1092 (2005).
    [CrossRef]
  6. K. Kato, IEEE Trans. Microwave Theory Tech. 47, 1265(1999).
    [CrossRef]
  7. D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, IEEE Photon. Technol. Lett. 23, 233 (2011).
    [CrossRef]
  8. S. Xie and C. H. Tan, IEEE J. Quantum Electron. 47, 1391 (2011).
    [CrossRef]
  9. M. H. Woods, W. C. Johnson, and M. A. Lampert, Solid-State Electron. 16, 381 (1973).
    [CrossRef]
  10. L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
    [CrossRef]
  11. M. R. Lorenz, R. Chicotka, and G. D. Pettit, Solid-State Commun. 8, 693 (1970).
    [CrossRef]
  12. S. Zollner, L. Chengtian, E. Schönherr, A. Böhringer, and M. Cardona, J. Appl. Phys. 66, 383 (1989).
    [CrossRef]

2011

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, IEEE Photon. Technol. Lett. 23, 233 (2011).
[CrossRef]

S. Xie and C. H. Tan, IEEE J. Quantum Electron. 47, 1391 (2011).
[CrossRef]

2010

L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Opt. Express 18, 27938 (2010).
[CrossRef]

2006

D. J. Massey, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 53, 2328 (2006).
[CrossRef]

2005

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, IEEE J. Quantum Electron. 41, 1092 (2005).
[CrossRef]

2003

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 50, 2027 (2003).
[CrossRef]

2002

J. C. Jackson, D. Phelan, A. P. Morrison, R. M. Redfern, and A. Mathewson, Proc. SPIE 4650, 55 (2002).
[CrossRef]

1999

K. Kato, IEEE Trans. Microwave Theory Tech. 47, 1265(1999).
[CrossRef]

1989

S. Zollner, L. Chengtian, E. Schönherr, A. Böhringer, and M. Cardona, J. Appl. Phys. 66, 383 (1989).
[CrossRef]

1973

M. H. Woods, W. C. Johnson, and M. A. Lampert, Solid-State Electron. 16, 381 (1973).
[CrossRef]

1970

M. R. Lorenz, R. Chicotka, and G. D. Pettit, Solid-State Commun. 8, 693 (1970).
[CrossRef]

Böhringer, A.

S. Zollner, L. Chengtian, E. Schönherr, A. Böhringer, and M. Cardona, J. Appl. Phys. 66, 383 (1989).
[CrossRef]

Cardona, M.

S. Zollner, L. Chengtian, E. Schönherr, A. Böhringer, and M. Cardona, J. Appl. Phys. 66, 383 (1989).
[CrossRef]

Chengtian, L.

S. Zollner, L. Chengtian, E. Schönherr, A. Böhringer, and M. Cardona, J. Appl. Phys. 66, 383 (1989).
[CrossRef]

Chicotka, R.

M. R. Lorenz, R. Chicotka, and G. D. Pettit, Solid-State Commun. 8, 693 (1970).
[CrossRef]

David, J. P. R.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, IEEE Photon. Technol. Lett. 23, 233 (2011).
[CrossRef]

L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
[CrossRef]

D. J. Massey, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 53, 2328 (2006).
[CrossRef]

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, IEEE J. Quantum Electron. 41, 1092 (2005).
[CrossRef]

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 50, 2027 (2003).
[CrossRef]

Elser, D.

Ghin, R.

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 50, 2027 (2003).
[CrossRef]

Groves, C.

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 50, 2027 (2003).
[CrossRef]

Hayat, M. M.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, IEEE Photon. Technol. Lett. 23, 233 (2011).
[CrossRef]

Jackson, J. C.

J. C. Jackson, D. Phelan, A. P. Morrison, R. M. Redfern, and A. Mathewson, Proc. SPIE 4650, 55 (2002).
[CrossRef]

Johnson, W. C.

M. H. Woods, W. C. Johnson, and M. A. Lampert, Solid-State Electron. 16, 381 (1973).
[CrossRef]

Jones, S. K.

L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
[CrossRef]

Kato, K.

K. Kato, IEEE Trans. Microwave Theory Tech. 47, 1265(1999).
[CrossRef]

Lampert, M. A.

M. H. Woods, W. C. Johnson, and M. A. Lampert, Solid-State Electron. 16, 381 (1973).
[CrossRef]

Lorenz, M. R.

M. R. Lorenz, R. Chicotka, and G. D. Pettit, Solid-State Commun. 8, 693 (1970).
[CrossRef]

Lydersen, L.

Makarov, V.

Massey, D. J.

D. J. Massey, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 53, 2328 (2006).
[CrossRef]

Mathewson, A.

J. C. Jackson, D. Phelan, A. P. Morrison, R. M. Redfern, and A. Mathewson, Proc. SPIE 4650, 55 (2002).
[CrossRef]

Morrison, A. P.

J. C. Jackson, D. Phelan, A. P. Morrison, R. M. Redfern, and A. Mathewson, Proc. SPIE 4650, 55 (2002).
[CrossRef]

Ng, J. S.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, IEEE Photon. Technol. Lett. 23, 233 (2011).
[CrossRef]

L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
[CrossRef]

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, IEEE J. Quantum Electron. 41, 1092 (2005).
[CrossRef]

Ong, D. S.

L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
[CrossRef]

Ong, D. S. G.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, IEEE Photon. Technol. Lett. 23, 233 (2011).
[CrossRef]

Pettit, G. D.

M. R. Lorenz, R. Chicotka, and G. D. Pettit, Solid-State Commun. 8, 693 (1970).
[CrossRef]

Phelan, D.

J. C. Jackson, D. Phelan, A. P. Morrison, R. M. Redfern, and A. Mathewson, Proc. SPIE 4650, 55 (2002).
[CrossRef]

Qian, Y.

L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
[CrossRef]

Redfern, R. M.

J. C. Jackson, D. Phelan, A. P. Morrison, R. M. Redfern, and A. Mathewson, Proc. SPIE 4650, 55 (2002).
[CrossRef]

Rees, G. J.

D. J. Massey, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 53, 2328 (2006).
[CrossRef]

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, IEEE J. Quantum Electron. 41, 1092 (2005).
[CrossRef]

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 50, 2027 (2003).
[CrossRef]

Schönherr, E.

S. Zollner, L. Chengtian, E. Schönherr, A. Böhringer, and M. Cardona, J. Appl. Phys. 66, 383 (1989).
[CrossRef]

Skaar, J.

Tan, C. H.

S. Xie and C. H. Tan, IEEE J. Quantum Electron. 47, 1391 (2011).
[CrossRef]

L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
[CrossRef]

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, IEEE J. Quantum Electron. 41, 1092 (2005).
[CrossRef]

Tan, L. J.

L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
[CrossRef]

Wiechers, C.

Wittmann, C.

Woods, M. H.

M. H. Woods, W. C. Johnson, and M. A. Lampert, Solid-State Electron. 16, 381 (1973).
[CrossRef]

Xie, S.

S. Xie and C. H. Tan, IEEE J. Quantum Electron. 47, 1391 (2011).
[CrossRef]

Zollner, S.

S. Zollner, L. Chengtian, E. Schönherr, A. Böhringer, and M. Cardona, J. Appl. Phys. 66, 383 (1989).
[CrossRef]

IEEE J. Quantum Electron.

J. S. Ng, C. H. Tan, J. P. R. David, and G. J. Rees, IEEE J. Quantum Electron. 41, 1092 (2005).
[CrossRef]

S. Xie and C. H. Tan, IEEE J. Quantum Electron. 47, 1391 (2011).
[CrossRef]

L. J. Tan, D. S. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, IEEE J. Quantum Electron. 46, 1153(2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. S. G. Ong, M. M. Hayat, J. P. R. David, and J. S. Ng, IEEE Photon. Technol. Lett. 23, 233 (2011).
[CrossRef]

IEEE Trans. Electron Devices

D. J. Massey, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 53, 2328 (2006).
[CrossRef]

C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, IEEE Trans. Electron Devices 50, 2027 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

K. Kato, IEEE Trans. Microwave Theory Tech. 47, 1265(1999).
[CrossRef]

J. Appl. Phys.

S. Zollner, L. Chengtian, E. Schönherr, A. Böhringer, and M. Cardona, J. Appl. Phys. 66, 383 (1989).
[CrossRef]

Opt. Express

Proc. SPIE

J. C. Jackson, D. Phelan, A. P. Morrison, R. M. Redfern, and A. Mathewson, Proc. SPIE 4650, 55 (2002).
[CrossRef]

Solid-State Commun.

M. R. Lorenz, R. Chicotka, and G. D. Pettit, Solid-State Commun. 8, 693 (1970).
[CrossRef]

Solid-State Electron.

M. H. Woods, W. C. Johnson, and M. A. Lampert, Solid-State Electron. 16, 381 (1973).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured I–V characteristic for PIN 1 (solid curve) and PIN 2 (dashed curve) at 300, 375, and 450 K .

Fig. 2
Fig. 2

Avalanche gain for PIN 1 (solid curves) and PIN 2 (dashed curves) at temperatures of 300, 350, 400, and 450 K . Inset: avalanche gain as a function of position.

Fig. 3
Fig. 3

1 / M as a function of reverse voltage for PIN 1 (closed symbols) and PIN 2 (open symbols) at temperatures of 300 (circles), 375 (triangles), and 450 K (squares); the dotted lines show the linear extrapolations.

Fig. 4
Fig. 4

Avalanche gain for PIN 1 at wavelengths of 450 (circles), 500 (upside down triangles), 600 (squares), 700 (diamonds), and 750 nm (triangles). Inset: photocurrent spectra for PIN 1 at 0 (circles), 5 (upside down triangles), 7 (squares), 9 (diamonds), and 11 V (triangles).

Metrics