Abstract

Current methods of estimating the Brillouin frequency shift in Brillouin optical time domain analysis sensors are based on curve-fitting techniques. These techniques apply the same weight to all portions of the curve and dutifully fit into the peak and noisy ends of the curve. This makes them very sensitive to noise, initialization of fitting param eters, symmetry, and start and stop frequencies. We introduce a method based on the cross-correlation technique to estimate the central frequency of noisy Lorentzian curves, which is more robust to noise and free from initial settings of fitting parameters.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses

Javier Urricelqui, Mikel Sagues, and Alayn Loayssa
Opt. Express 23(23) 30448-30458 (2015)

High-resolution Brillouin optical correlation domain analysis with no spectral scanning

Eyal Preter, Dexin Ba, Yosef London, Orel Shlomi, Yair Antman, and Avi Zadok
Opt. Express 24(24) 27253-27267 (2016)

1200°C high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis

Pengbai Xu, Yongkang Dong, Dengwang Zhou, Cheng Fu, Juwang Zhang, Hongying Zhang, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Appl. Opt. 55(21) 5471-5478 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription