Abstract

We design an ultracompact optical isolator with normal incident geometry that operates with a bandwidth that is substantial for a device of this size. For operation in a telecommunication wavelength of 1.55μm, the thickness of the device is less than 1μm and the device supports an operating bandwidth of 400GHz over which the minimum contrast ratio exceeds 25dB. Our design utilizes guided resonance in a photonic crystal slab to enhance magneto-optical effects, and exploits interference effects among multiple resonances to create desired transmission spectral line shapes.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
    [CrossRef]
  2. S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64(1999).
    [CrossRef]
  3. M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
    [CrossRef]
  4. M. J. Steel, M. Levy, and R. M. Osgood, J. Lightwave Technol. 18, 1297 (2000).
    [CrossRef]
  5. R. Li and M. Levy, Appl. Phys. Lett. 86, 251102 (2005).
    [CrossRef]
  6. Z. Yu, Z. Wang, and S. Fan, Appl. Phys. Lett. 90, 121133(2007).
    [CrossRef]
  7. Z. Wang and S. Fan, Appl. Phys. B 81, 369 (2005).
    [CrossRef]
  8. Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
    [CrossRef] [PubMed]
  9. W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, Opt. Lett. 35, 568 (2010).
    [CrossRef] [PubMed]
  10. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, Opt. Express 15, 7737 (2007).
    [CrossRef] [PubMed]
  11. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kroemer, and J. E. Bowers, Opt. Express 19, 11740 (2011).
    [CrossRef] [PubMed]
  12. S. Fan and J. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  13. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, J. Opt. Soc. Am. B 26, 1594 (2009).
    [CrossRef]
  14. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, Phys. Rev. Lett. 105, 126804 (2010).
    [CrossRef] [PubMed]
  15. H. Zhu and C. Jiang, Opt. Lett. 36, 1308 (2011).
    [CrossRef] [PubMed]
  16. N. Adachi, V. P. Denysenkov, S. I. Khartsev, and A. M. Grishin, J. Appl. Phys. 88, 2734 (2000).
    [CrossRef]
  17. T. Tepper and C. A. Ross, J. Cryst. Growth 255, 324 (2003).
    [CrossRef]
  18. D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610(1999).
    [CrossRef]
  19. The relative variation of resonance frequency when the number of plane waves is 889 is less than 0.2%.
  20. M. Beheiry, V. Liu, S. Fan, and O. Levi, Opt. Express 18, 22702 (2010).
    [CrossRef] [PubMed]
  21. W. Suh, Z. Wang, and S. Fan, IEEE J. Quantum Electron. 40, 1511 (2004).
    [CrossRef]
  22. W. Suh and S. Fan, Appl. Phys. Lett. 84, 4905 (2004).
    [CrossRef]
  23. S. Kahl, “Bismuth iron garnet films for magneto-optical photonic crystals,” Ph.D. dissertation (Department of Condensed Matter Physics/KTH, Royal Institute of Technology, Stockholm, Sweden, 2004).

2011 (2)

2010 (3)

2009 (1)

2007 (2)

2005 (3)

Z. Wang and S. Fan, Appl. Phys. B 81, 369 (2005).
[CrossRef]

R. Li and M. Levy, Appl. Phys. Lett. 86, 251102 (2005).
[CrossRef]

Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
[CrossRef] [PubMed]

2004 (2)

W. Suh, Z. Wang, and S. Fan, IEEE J. Quantum Electron. 40, 1511 (2004).
[CrossRef]

W. Suh and S. Fan, Appl. Phys. Lett. 84, 4905 (2004).
[CrossRef]

2003 (1)

T. Tepper and C. A. Ross, J. Cryst. Growth 255, 324 (2003).
[CrossRef]

2002 (1)

S. Fan and J. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

2000 (3)

N. Adachi, V. P. Denysenkov, S. I. Khartsev, and A. M. Grishin, J. Appl. Phys. 88, 2734 (2000).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, J. Lightwave Technol. 18, 1297 (2000).
[CrossRef]

1999 (2)

D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610(1999).
[CrossRef]

S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64(1999).
[CrossRef]

1998 (1)

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Abe, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Adachi, N.

N. Adachi, V. P. Denysenkov, S. I. Khartsev, and A. M. Grishin, J. Appl. Phys. 88, 2734 (2000).
[CrossRef]

Arai, K.

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Beheiry, M.

Belotelov, V. I.

Bowers, J. E.

Bykov, D. A.

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610(1999).
[CrossRef]

Dagens, B.

Denysenkov, V. P.

N. Adachi, V. P. Denysenkov, S. I. Khartsev, and A. M. Grishin, J. Appl. Phys. 88, 2734 (2000).
[CrossRef]

Doskolovich, L. L.

Fan, S.

M. Beheiry, V. Liu, S. Fan, and O. Levi, Opt. Express 18, 22702 (2010).
[CrossRef] [PubMed]

Z. Yu, Z. Wang, and S. Fan, Appl. Phys. Lett. 90, 121133(2007).
[CrossRef]

Z. Wang and S. Fan, Appl. Phys. B 81, 369 (2005).
[CrossRef]

Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
[CrossRef] [PubMed]

W. Suh and S. Fan, Appl. Phys. Lett. 84, 4905 (2004).
[CrossRef]

W. Suh, Z. Wang, and S. Fan, IEEE J. Quantum Electron. 40, 1511 (2004).
[CrossRef]

S. Fan and J. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Fujii, T.

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Gralak, B.

Grishin, A. M.

N. Adachi, V. P. Denysenkov, S. I. Khartsev, and A. M. Grishin, J. Appl. Phys. 88, 2734 (2000).
[CrossRef]

Inoue, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Jiang, C.

Joannopoulos, J.

S. Fan and J. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Kahl, S.

S. Kahl, “Bismuth iron garnet films for magneto-optical photonic crystals,” Ph.D. dissertation (Department of Condensed Matter Physics/KTH, Royal Institute of Technology, Stockholm, Sweden, 2004).

Kakihara, K.

Kalish, A. N.

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef] [PubMed]

Khartsev, S. I.

N. Adachi, V. P. Denysenkov, S. I. Khartsev, and A. M. Grishin, J. Appl. Phys. 88, 2734 (2000).
[CrossRef]

Kivshar, Y. S.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef] [PubMed]

Kono, N.

Koshiba, M.

Kroemer, H.

Levi, O.

Levy, M.

R. Li and M. Levy, Appl. Phys. Lett. 86, 251102 (2005).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, J. Lightwave Technol. 18, 1297 (2000).
[CrossRef]

Li, R.

R. Li and M. Levy, Appl. Phys. Lett. 86, 251102 (2005).
[CrossRef]

Liu, V.

Magdenko, L.

Mizumoto, T.

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef] [PubMed]

Osgood, R. M.

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, J. Lightwave Technol. 18, 1297 (2000).
[CrossRef]

Pintus, P.

Romero-Vivas, J.

Ross, C. A.

T. Tepper and C. A. Ross, J. Cryst. Growth 255, 324 (2003).
[CrossRef]

Saitoh, K.

Sakaguchi, S.

S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64(1999).
[CrossRef]

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef] [PubMed]

Smigaj, W.

Steel, M. J.

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, J. Lightwave Technol. 18, 1297 (2000).
[CrossRef]

Sugimoto, N.

S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64(1999).
[CrossRef]

Suh, W.

W. Suh, Z. Wang, and S. Fan, IEEE J. Quantum Electron. 40, 1511 (2004).
[CrossRef]

W. Suh and S. Fan, Appl. Phys. Lett. 84, 4905 (2004).
[CrossRef]

Tepper, T.

T. Tepper and C. A. Ross, J. Cryst. Growth 255, 324 (2003).
[CrossRef]

Tien, M.-C.

Vanwolleghem, M.

Wang, Z.

Z. Yu, Z. Wang, and S. Fan, Appl. Phys. Lett. 90, 121133(2007).
[CrossRef]

Z. Wang and S. Fan, Appl. Phys. B 81, 369 (2005).
[CrossRef]

Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
[CrossRef] [PubMed]

W. Suh, Z. Wang, and S. Fan, IEEE J. Quantum Electron. 40, 1511 (2004).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610(1999).
[CrossRef]

Yu, Z.

Z. Yu, Z. Wang, and S. Fan, Appl. Phys. Lett. 90, 121133(2007).
[CrossRef]

Zhu, H.

Zvezdin, A. K.

Appl. Phys. B (1)

Z. Wang and S. Fan, Appl. Phys. B 81, 369 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

W. Suh and S. Fan, Appl. Phys. Lett. 84, 4905 (2004).
[CrossRef]

R. Li and M. Levy, Appl. Phys. Lett. 86, 251102 (2005).
[CrossRef]

Z. Yu, Z. Wang, and S. Fan, Appl. Phys. Lett. 90, 121133(2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, IEEE J. Quantum Electron. 40, 1511 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

J. Appl. Phys. (2)

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

N. Adachi, V. P. Denysenkov, S. I. Khartsev, and A. M. Grishin, J. Appl. Phys. 88, 2734 (2000).
[CrossRef]

J. Cryst. Growth (1)

T. Tepper and C. A. Ross, J. Cryst. Growth 255, 324 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64(1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

S. Fan and J. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610(1999).
[CrossRef]

Phys. Rev. Lett. (1)

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef] [PubMed]

Other (2)

S. Kahl, “Bismuth iron garnet films for magneto-optical photonic crystals,” Ph.D. dissertation (Department of Condensed Matter Physics/KTH, Royal Institute of Technology, Stockholm, Sweden, 2004).

The relative variation of resonance frequency when the number of plane waves is 889 is less than 0.2%.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photonic crystal slab consisting of magneto-optic material and air holes. The lattice constant is a and the thickness of the slab is d = 0.5 a . The side lengths of the large and small air holes in the unit cell are b 1 = 0.4 a and b 2 = 0.18 a , respectively. Top right is the top view of the unit cell (dashed line). The origin of the coordinates is at the center of the larger air hole in the middle of the slab. The arrow denotes the normally incident light.

Fig. 2
Fig. 2

Intensity transmission spectra for normally incident left circularly polarized (green dashed) and right circularly polarized (blue) light from top through the photonic crystal slab in Fig. 1.

Fig. 3
Fig. 3

x and y components of the electric field of the guided resonances in a vertical plane at y = 0.25 a . (a) and (b) are the E x and E y field components of the TE-like resonance. (c) and (d) are the E x and E y field components of the TM-like resonance. The solid lines indicate the top and bottom surfaces of the slab.

Fig. 4
Fig. 4

E y field of the guided resonances. (a)  E y of TE-like resonance in the center of the slab ( z = 0 ) and (b)  E y of TM-like resonance in a plane with z = 0.2 a . The regions enclosed by the solid lines represent the air holes. The field is excited by linearly polarized light with only an E y component.

Fig. 5
Fig. 5

Intensity transmission spectra for the normally incident left circularly polarized (green dashed) and right circularly polarized (blue) light through a photonic crystal slab. The slab is the same as in Fig. 1, except that the corner air hole now has a side length of b 2 = 0.1984 a . For an operation wavelength of 1.55 μm , the lattice constant a = 1.74 μm and the thickness of the slab d = 0.87 μm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϵ = ( ϵ r i ϵ i 0 i ϵ i ϵ r 0 0 0 ϵ r ) ,
Δ ω = ω 0 d V ϵ i z ^ · ( E 1 * × E 2 ) d V ϵ r | E 1 | 2 d V ϵ r | E 2 | 2 ,

Metrics