Abstract

We address for the first time the measurement of nonradiative decay rates in Cr-related centers in nanodiamonds. Compared to our previous quantum efficiency measurement of Cr centers created in bulk diamond, separate measurements of radiative and nonradiative decay rates in grown nanodiamonds prove more challenging due to size dependence effects. We demonstrate in this Letter that, using defocused dipole imaging and collection efficiency calculation via finite-difference time-domain (FDTD), a quantum efficiency up to 0.9 can be inferred to Cr-related centers showing a 2-level system photon statistics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription