Abstract

Switching between states in a dispersive bistable injection-locked slave laser has been theoretically investigated. We show that the switching can be achieved by relatively small and short (1050ps) variation of the master laser injection power or frequency, which, besides the variation of the slave laser optical power, leads to significant variation of its photon phase (5π/6). By using an analytical model, we calculate the switching time dependence on the magnitude of the injection power and the frequency detuning variation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Osborne, K. Buckley, A. Amann, and S. O’Brien, Opt. Express 17, 6293 (2009).
    [CrossRef] [PubMed]
  2. N. L. Hoang, J. S. Cho, and Y. H. Won, Opt. Express 15, 5166 (2007).
    [CrossRef] [PubMed]
  3. K. Huybrechts, T. Tanemura, K. Takeda, Y. Nakano, R. Baets, and G. Morthier, IEEE J. Sel. Top. Quantum Electron. 16, 1434 (2010).
    [CrossRef]
  4. Y. Lu, F. Liu, M. Qiu, and Y. Su, Opt. Express 15, 14275(2007).
    [CrossRef] [PubMed]
  5. T. Kawanishi, T. Sakamoto, and M. Izutsu, Opt. Express 13, 8038 (2005).
    [CrossRef] [PubMed]
  6. R. Hui, IEEE Photon. Technol. Lett. 2, 743 (1990).
    [CrossRef]
  7. R. Hui, J. Lightwave Technol. 13, 42 (1995).
    [CrossRef]
  8. M. M. Krstić, J. V. Crnjanski, and D. M. Gvozdić, IEEE J. Sel. Top. Quantum Electron. , doi:10.1109/JSTQE.2011.2135335 (2011).
    [CrossRef]
  9. R. Lang, IEEE J. Quantum Electron. 18, 976 (1982).
    [CrossRef]

2011 (1)

M. M. Krstić, J. V. Crnjanski, and D. M. Gvozdić, IEEE J. Sel. Top. Quantum Electron. , doi:10.1109/JSTQE.2011.2135335 (2011).
[CrossRef]

2010 (1)

K. Huybrechts, T. Tanemura, K. Takeda, Y. Nakano, R. Baets, and G. Morthier, IEEE J. Sel. Top. Quantum Electron. 16, 1434 (2010).
[CrossRef]

2009 (1)

2007 (2)

2005 (1)

1995 (1)

R. Hui, J. Lightwave Technol. 13, 42 (1995).
[CrossRef]

1990 (1)

R. Hui, IEEE Photon. Technol. Lett. 2, 743 (1990).
[CrossRef]

1982 (1)

R. Lang, IEEE J. Quantum Electron. 18, 976 (1982).
[CrossRef]

Amann, A.

Baets, R.

K. Huybrechts, T. Tanemura, K. Takeda, Y. Nakano, R. Baets, and G. Morthier, IEEE J. Sel. Top. Quantum Electron. 16, 1434 (2010).
[CrossRef]

Buckley, K.

Cho, J. S.

Crnjanski, J. V.

M. M. Krstić, J. V. Crnjanski, and D. M. Gvozdić, IEEE J. Sel. Top. Quantum Electron. , doi:10.1109/JSTQE.2011.2135335 (2011).
[CrossRef]

Gvozdic, D. M.

M. M. Krstić, J. V. Crnjanski, and D. M. Gvozdić, IEEE J. Sel. Top. Quantum Electron. , doi:10.1109/JSTQE.2011.2135335 (2011).
[CrossRef]

Hoang, N. L.

Hui, R.

R. Hui, J. Lightwave Technol. 13, 42 (1995).
[CrossRef]

R. Hui, IEEE Photon. Technol. Lett. 2, 743 (1990).
[CrossRef]

Huybrechts, K.

K. Huybrechts, T. Tanemura, K. Takeda, Y. Nakano, R. Baets, and G. Morthier, IEEE J. Sel. Top. Quantum Electron. 16, 1434 (2010).
[CrossRef]

Izutsu, M.

Kawanishi, T.

Krstic, M. M.

M. M. Krstić, J. V. Crnjanski, and D. M. Gvozdić, IEEE J. Sel. Top. Quantum Electron. , doi:10.1109/JSTQE.2011.2135335 (2011).
[CrossRef]

Lang, R.

R. Lang, IEEE J. Quantum Electron. 18, 976 (1982).
[CrossRef]

Liu, F.

Lu, Y.

Morthier, G.

K. Huybrechts, T. Tanemura, K. Takeda, Y. Nakano, R. Baets, and G. Morthier, IEEE J. Sel. Top. Quantum Electron. 16, 1434 (2010).
[CrossRef]

Nakano, Y.

K. Huybrechts, T. Tanemura, K. Takeda, Y. Nakano, R. Baets, and G. Morthier, IEEE J. Sel. Top. Quantum Electron. 16, 1434 (2010).
[CrossRef]

O’Brien, S.

Osborne, S.

Qiu, M.

Sakamoto, T.

Su, Y.

Takeda, K.

K. Huybrechts, T. Tanemura, K. Takeda, Y. Nakano, R. Baets, and G. Morthier, IEEE J. Sel. Top. Quantum Electron. 16, 1434 (2010).
[CrossRef]

Tanemura, T.

K. Huybrechts, T. Tanemura, K. Takeda, Y. Nakano, R. Baets, and G. Morthier, IEEE J. Sel. Top. Quantum Electron. 16, 1434 (2010).
[CrossRef]

Won, Y. H.

IEEE J. Quantum Electron. (1)

R. Lang, IEEE J. Quantum Electron. 18, 976 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Huybrechts, T. Tanemura, K. Takeda, Y. Nakano, R. Baets, and G. Morthier, IEEE J. Sel. Top. Quantum Electron. 16, 1434 (2010).
[CrossRef]

M. M. Krstić, J. V. Crnjanski, and D. M. Gvozdić, IEEE J. Sel. Top. Quantum Electron. , doi:10.1109/JSTQE.2011.2135335 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Hui, IEEE Photon. Technol. Lett. 2, 743 (1990).
[CrossRef]

J. Lightwave Technol. (1)

R. Hui, J. Lightwave Technol. 13, 42 (1995).
[CrossRef]

Opt. Express (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a)  d n / d t versus n for all modes (dotted–dashed line) and for IL mode m = 5 (solid line) for P inj = P 0 and for bistability limiting powers P inj ( 2 ) and P inj ( 1 ) . Same for P inj = P 0 ± Δ P (arrow dotted lines). (Left inset) mode spectrum, (right inset) enlarged vicinity of state n 2 (gray circle) and its corresponding position (open circle) on d n / d t n curve for IL mode. (b)  S m P inj and (c)  θ m P inj hysteresis for several Δ ω values and transitions from state n 1 (solid circle) to n 2 (open circle) and vice versa.

Fig. 2
Fig. 2

(a)  d n / d t versus n for IL mode m = 5 (solid line) and corresponding stationary states for Δ ω = Δ ω 0 and for bistability limiting detuning Δ ω ( 1 ) and Δ ω ( 2 ) . Same for Δ ω = Δ ω 0 δ ω (arrow dotted line). (Inset) Same for Δ ω = Δ ω 0 + δ ω (arrow dotted line) showing n t s between n 2 and n 1 preventing switching. (b)  S m Δ ω and (c)  θ m Δ ω hysteresis for several P inj values.

Fig. 3
Fig. 3

(a) Switching time t i f for injection power increase (↑) and decrease (↓) for different starting pairs of power and detuning [ P 0 (dBm), Δ ω (Ω)]: ( 6.7 , 15 ) (dotted line), ( 9.5 , 11 ) (dotted–dashed line), ( 13.5 , 7 ) (dashed line), and ( 18.5 , 4 ) (solid line). (b) Switching time t 12 versus δ ω .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d S m / d t = 0 = A S m + 2 k c S inj S m cos ( θ m ) ,
d θ m / d t = 0 = α A / 2 Δ ω k c S inj / S m sin ( θ m ) ,
S m = 4 k c 2 S inj / [ A 2 ( 1 + α 2 ) 4 A α Δ ω + 4 Δ ω 2 ] .
θ m = arcsin [ ( α A 2 Δ ω ) A 2 ( 1 + α 2 ) 4 α Δ ω A + 4 Δ ω 2 ] .
d n / d t = ξ d A / d t = Q ( A + τ p 1 ) S m / Γ .
ξ [ Q 1 + ( K 4 A + K 5 ) / ( K 1 A 2 + K 2 A + K 3 ) ] d A = d t .
Π ( A ) = ξ A / Q + ξ K 4 ln [ K 1 A 2 + K 2 A + K 3 ] / 2 K 1 + ξ ( 2 K 1 K 5 K 2 K 4 ) K 1 4 K 1 K 3 K 2 2 arctan [ 2 K 1 A + K 2 4 K 1 K 3 K 2 2 ] .

Metrics