Abstract

A large phase shift of the strongly nonlocal spatial optical soliton (SNSOS) was predicted by Guo et al. [Phys. Rev. E 69, 016602 (2004)]. We investigate the phase shift of the SNSOS in lead glass. It is found that the phase shift rate along the propagating direction of such a soliton is one order larger than that of the local soliton. The theory agrees quantitatively with the experiment on the dependence of the phase shift on the degree of nonlocality. We realize a π-phase shift by changing the optical power by about 10mW around the critical soliton power, which agrees qualitatively with our theoretical result.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
    [CrossRef]
  2. C. Rotschild, O. Cohen, O. Manela, and M. Segev, Phys. Rev. Lett. 95, 213904 (2005).
    [CrossRef] [PubMed]
  3. C. Rotschild, M. Segev, Z. Y. Xu, Y. V. Kartashov, L. Torner, and O. Cohen, Opt. Lett. 31, 3312 (2006).
    [CrossRef] [PubMed]
  4. D. Deng and Q. Guo, Opt. Lett. 32, 3206 (2007).
    [CrossRef] [PubMed]
  5. D. Deng, X. Zhao, and Q. Guo, J. Opt. Soc. Am. B 24, 2537 (2007).
    [CrossRef]
  6. O. Cohen, H. Buljan, T. Schwartz, J. W. Fleischer, and M. Segev, Phys. Rev. E 73, 015601(R) (2006).
    [CrossRef]
  7. C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Nat. Photon. 2, 371 (2008).
    [CrossRef]
  8. Q. Guo, B. Luo, F. Yi, S. Chi, and Y. Xie, Phys. Rev. E 69, 016602 (2004).
    [CrossRef]
  9. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  10. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, Opt. Lett. 15, 471 (1990).
    [CrossRef] [PubMed]
  11. Y. Xie and Q. Guo, Opt. Quantum Electron. 36, 1335 (2004).
    [CrossRef]
  12. B. Alfassi, C. Rotschild, O. Manela, and M. Segev, Opt. Lett. 32, 154 (2007).
    [CrossRef]
  13. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 99, 043903 (2007).
    [CrossRef] [PubMed]

2008 (1)

C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Nat. Photon. 2, 371 (2008).
[CrossRef]

2007 (4)

2006 (2)

O. Cohen, H. Buljan, T. Schwartz, J. W. Fleischer, and M. Segev, Phys. Rev. E 73, 015601(R) (2006).
[CrossRef]

C. Rotschild, M. Segev, Z. Y. Xu, Y. V. Kartashov, L. Torner, and O. Cohen, Opt. Lett. 31, 3312 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Rotschild, O. Cohen, O. Manela, and M. Segev, Phys. Rev. Lett. 95, 213904 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Xie and Q. Guo, Opt. Quantum Electron. 36, 1335 (2004).
[CrossRef]

Q. Guo, B. Luo, F. Yi, S. Chi, and Y. Xie, Phys. Rev. E 69, 016602 (2004).
[CrossRef]

1997 (1)

A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
[CrossRef]

1990 (1)

Aitchison, J. S.

Alfassi, B.

Buljan, H.

O. Cohen, H. Buljan, T. Schwartz, J. W. Fleischer, and M. Segev, Phys. Rev. E 73, 015601(R) (2006).
[CrossRef]

Chi, S.

Q. Guo, B. Luo, F. Yi, S. Chi, and Y. Xie, Phys. Rev. E 69, 016602 (2004).
[CrossRef]

Cohen, O.

C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Nat. Photon. 2, 371 (2008).
[CrossRef]

O. Cohen, H. Buljan, T. Schwartz, J. W. Fleischer, and M. Segev, Phys. Rev. E 73, 015601(R) (2006).
[CrossRef]

C. Rotschild, M. Segev, Z. Y. Xu, Y. V. Kartashov, L. Torner, and O. Cohen, Opt. Lett. 31, 3312 (2006).
[CrossRef] [PubMed]

C. Rotschild, O. Cohen, O. Manela, and M. Segev, Phys. Rev. Lett. 95, 213904 (2005).
[CrossRef] [PubMed]

Conti, C.

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 99, 043903 (2007).
[CrossRef] [PubMed]

Deng, D.

Fleischer, J. W.

O. Cohen, H. Buljan, T. Schwartz, J. W. Fleischer, and M. Segev, Phys. Rev. E 73, 015601(R) (2006).
[CrossRef]

Ghofraniha, N.

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 99, 043903 (2007).
[CrossRef] [PubMed]

Guo, Q.

D. Deng and Q. Guo, Opt. Lett. 32, 3206 (2007).
[CrossRef] [PubMed]

D. Deng, X. Zhao, and Q. Guo, J. Opt. Soc. Am. B 24, 2537 (2007).
[CrossRef]

Q. Guo, B. Luo, F. Yi, S. Chi, and Y. Xie, Phys. Rev. E 69, 016602 (2004).
[CrossRef]

Y. Xie and Q. Guo, Opt. Quantum Electron. 36, 1335 (2004).
[CrossRef]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Jackel, J. L.

Kartashov, Y. V.

Leaird, D. E.

Luo, B.

Q. Guo, B. Luo, F. Yi, S. Chi, and Y. Xie, Phys. Rev. E 69, 016602 (2004).
[CrossRef]

Manela, O.

B. Alfassi, C. Rotschild, O. Manela, and M. Segev, Opt. Lett. 32, 154 (2007).
[CrossRef]

C. Rotschild, O. Cohen, O. Manela, and M. Segev, Phys. Rev. Lett. 95, 213904 (2005).
[CrossRef] [PubMed]

Mitchell, D. J.

A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
[CrossRef]

Oliver, M. K.

Rotschild, C.

C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Nat. Photon. 2, 371 (2008).
[CrossRef]

B. Alfassi, C. Rotschild, O. Manela, and M. Segev, Opt. Lett. 32, 154 (2007).
[CrossRef]

C. Rotschild, M. Segev, Z. Y. Xu, Y. V. Kartashov, L. Torner, and O. Cohen, Opt. Lett. 31, 3312 (2006).
[CrossRef] [PubMed]

C. Rotschild, O. Cohen, O. Manela, and M. Segev, Phys. Rev. Lett. 95, 213904 (2005).
[CrossRef] [PubMed]

Ruocco, G.

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 99, 043903 (2007).
[CrossRef] [PubMed]

Schwartz, T.

C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Nat. Photon. 2, 371 (2008).
[CrossRef]

O. Cohen, H. Buljan, T. Schwartz, J. W. Fleischer, and M. Segev, Phys. Rev. E 73, 015601(R) (2006).
[CrossRef]

Segev, M.

C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Nat. Photon. 2, 371 (2008).
[CrossRef]

B. Alfassi, C. Rotschild, O. Manela, and M. Segev, Opt. Lett. 32, 154 (2007).
[CrossRef]

O. Cohen, H. Buljan, T. Schwartz, J. W. Fleischer, and M. Segev, Phys. Rev. E 73, 015601(R) (2006).
[CrossRef]

C. Rotschild, M. Segev, Z. Y. Xu, Y. V. Kartashov, L. Torner, and O. Cohen, Opt. Lett. 31, 3312 (2006).
[CrossRef] [PubMed]

C. Rotschild, O. Cohen, O. Manela, and M. Segev, Phys. Rev. Lett. 95, 213904 (2005).
[CrossRef] [PubMed]

Silberberg, Y.

Smith, P. W. E.

Snyder, A. W.

A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
[CrossRef]

Torner, L.

Trillo, S.

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 99, 043903 (2007).
[CrossRef] [PubMed]

Vogel, E. M.

Weiner, A. M.

Xie, Y.

Q. Guo, B. Luo, F. Yi, S. Chi, and Y. Xie, Phys. Rev. E 69, 016602 (2004).
[CrossRef]

Y. Xie and Q. Guo, Opt. Quantum Electron. 36, 1335 (2004).
[CrossRef]

Xu, Z. Y.

Yi, F.

Q. Guo, B. Luo, F. Yi, S. Chi, and Y. Xie, Phys. Rev. E 69, 016602 (2004).
[CrossRef]

Zhao, X.

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Nat. Photon. 2, 371 (2008).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

Y. Xie and Q. Guo, Opt. Quantum Electron. 36, 1335 (2004).
[CrossRef]

Phys. Rev. E (2)

Q. Guo, B. Luo, F. Yi, S. Chi, and Y. Xie, Phys. Rev. E 69, 016602 (2004).
[CrossRef]

O. Cohen, H. Buljan, T. Schwartz, J. W. Fleischer, and M. Segev, Phys. Rev. E 73, 015601(R) (2006).
[CrossRef]

Phys. Rev. Lett. (2)

C. Rotschild, O. Cohen, O. Manela, and M. Segev, Phys. Rev. Lett. 95, 213904 (2005).
[CrossRef] [PubMed]

N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 99, 043903 (2007).
[CrossRef] [PubMed]

Science (1)

A. W. Snyder and D. J. Mitchell, Science 276, 1538 (1997).
[CrossRef]

Other (1)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Phase shift of SNSOS versus P 0 / P c . The bottom two solid curves are the analytical results in the cases of the same propagation length z = 2 L R but different glass radii w 0 / R 0 = 1 / 200 (upper curve) and w 0 / R 0 = 1 / 40 (lower curve), which are the cases in the following experiment. Triangles and squares are, respectively, the experimental data obtained in lead glass bars with diameters of 15 mm and 3 mm . The upper solid curves are the linear fits.

Fig. 2
Fig. 2

Experimental setup. TA, tunable attenuator; L 1 , L 2 , L 3 , L 4 , lenses.

Fig. 3
Fig. 3

Normalized intensity distributions along the direction perpendicular to the interference fringes through the middle of the fringes. Inset shows the representative interference fringes between the signal beam and the reference beam.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z , t ) = A ( x , y , z ) exp [ i ( ω t k z ) ] ,
2 i k A z + 1 r r ( r A r ) + 2 k 2 Δ n n 0 A = 0 ,
1 r r ( r T r ) = α κ | A ( r ) | 2 ,
Δ n = Δ n ( 0 ) r 2 Δ n ( 2 ) .
A = P 0 π w ( z ) exp [ i θ ( z ) ] exp [ r 2 2 w ( z ) 2 + i c ( z ) r 2 ] ,
Δ n ( 0 ) = α β P 0 4 π κ { Γ [ 0 , R 0 2 w 2 ( z ) ] + ln [ R 0 2 w 2 ( z ) ] + γ } ,
θ = θ ( 0 ) + θ ( 2 ) ,
w ( z ) = w 0 [ σ + ( 1 σ ) cos ( b z ) ] ,
θ ( 2 ) = 2 2 σ 1 { ( 1 σ ) sin ( b z ) σ + ( 1 σ ) cos ( b z ) 2 σ 2 σ 1 [ arctan ( ( 2 σ 1 ) tan b z 2 ) ] } ,
θ ˙ c ( z ) = θ z | P 0 = P c = [ ln ( R 0 2 w 0 2 ) + 6.24 ] 1 L R ,

Metrics