Abstract

Using mutually modulated cross-gain modulation, Stokes optical frequency changes are converted into modulation phase changes with high sensitivity. In the slow-light transition regime, we demonstrate kilohertz sensitivity to the Stokes optical carrier frequency. The sensitivity is inversely proportional to the modulation frequency of the pump and Stokes beams.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol.  43, pp. 497–530.
    [CrossRef]
  2. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, Nat. Photon. 4, 776 (2010), and references therein.
    [CrossRef]
  3. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, Opt. Express 18, 22599 (2010).
    [CrossRef] [PubMed]
  4. L. Wang, B. Zhou, C. Shu, and S. He, Opt. Lett. 36, 427(2011).
    [CrossRef] [PubMed]
  5. T. Arditi, E. Granot, and S. Sternklar, Opt. Lett. 32, 2689(2007).
    [CrossRef] [PubMed]
  6. S. Sternklar, E. Sarid, A. Arbel, and E. Granot, Opt. Lett. 34, 2832 (2009).
    [CrossRef] [PubMed]
  7. S. Sternklar, E. Sarid, M. Wart, and E. Granot, J. Opt. 12, 104016 (2010).
    [CrossRef]
  8. E. A. Kuzin, M. P. Petrov, and A. A. Fotiadi, in Optical Phase Conjugation, M.Gower, D.Proch, eds. (Springer, 1994), pp. 74–96.
  9. K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, Opt. Lett. 36, 2185 (2011).
    [CrossRef] [PubMed]
  10. M. Nikles, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]
  11. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, Opt. Lett. 32, 915 (2007).
    [CrossRef] [PubMed]
  12. Z. M. Shi and R. W. Boyd, J. Opt. Soc. Am. B 25, C136(2008).
    [CrossRef]

2011 (2)

2010 (3)

S. Sternklar, E. Sarid, M. Wart, and E. Granot, J. Opt. 12, 104016 (2010).
[CrossRef]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, Nat. Photon. 4, 776 (2010), and references therein.
[CrossRef]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, Opt. Express 18, 22599 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (2)

1997 (1)

M. Nikles, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Arbel, A.

Arditi, T.

Berger, P.

Bourderionnet, J.

Boyd, R. W.

Capmany, J.

Chin, S.

Dolfi, D.

Dudley, C. C.

Fotiadi, A. A.

E. A. Kuzin, M. P. Petrov, and A. A. Fotiadi, in Optical Phase Conjugation, M.Gower, D.Proch, eds. (Springer, 1994), pp. 74–96.

Gauthier, D. J.

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, Opt. Lett. 32, 915 (2007).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol.  43, pp. 497–530.
[CrossRef]

Granot, E.

Gu, Z. C.

Hawkins, A. R.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, Nat. Photon. 4, 776 (2010), and references therein.
[CrossRef]

He, S.

Hu, X.

Hulbert, J. F.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, Nat. Photon. 4, 776 (2010), and references therein.
[CrossRef]

Hurd, K.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, Nat. Photon. 4, 776 (2010), and references therein.
[CrossRef]

Kuzin, E. A.

E. A. Kuzin, M. P. Petrov, and A. A. Fotiadi, in Optical Phase Conjugation, M.Gower, D.Proch, eds. (Springer, 1994), pp. 74–96.

Lunt, E. J.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, Nat. Photon. 4, 776 (2010), and references therein.
[CrossRef]

Luo, S. Y.

Nikles, M.

M. Nikles, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Peng, J. S.

Petrov, M. P.

E. A. Kuzin, M. P. Petrov, and A. A. Fotiadi, in Optical Phase Conjugation, M.Gower, D.Proch, eds. (Springer, 1994), pp. 74–96.

Qian, K.

Robert, P. A.

M. Nikles, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Sales, S.

Sancho, J.

Sarid, E.

S. Sternklar, E. Sarid, M. Wart, and E. Granot, J. Opt. 12, 104016 (2010).
[CrossRef]

S. Sternklar, E. Sarid, A. Arbel, and E. Granot, Opt. Lett. 34, 2832 (2009).
[CrossRef] [PubMed]

Schmidt, H.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, Nat. Photon. 4, 776 (2010), and references therein.
[CrossRef]

Shi, Z.

Shi, Z. M.

Shu, C.

Sternklar, S.

Thévenaz, L.

Wang, L.

Wart, M.

S. Sternklar, E. Sarid, M. Wart, and E. Granot, J. Opt. 12, 104016 (2010).
[CrossRef]

Wu, B.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, Nat. Photon. 4, 776 (2010), and references therein.
[CrossRef]

Xia, Y. X.

Zhan, L.

Zhang, L.

Zhou, B.

Zhu, Z. Q.

J. Lightwave Technol. (1)

M. Nikles, L. Thévenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

J. Opt. (1)

S. Sternklar, E. Sarid, M. Wart, and E. Granot, J. Opt. 12, 104016 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, Nat. Photon. 4, 776 (2010), and references therein.
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Other (2)

R. W. Boyd and D. J. Gauthier, in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol.  43, pp. 497–530.
[CrossRef]

E. A. Kuzin, M. P. Petrov, and A. A. Fotiadi, in Optical Phase Conjugation, M.Gower, D.Proch, eds. (Springer, 1994), pp. 74–96.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of experiment. C, couplers; D1, D2, detectors; EOM high, gigahertz range electrooptic modulator; EOM low, kilohertz range electrooptic modulator.

Fig. 2
Fig. 2

Theory (solid line) and experimental data (symbols) of the normalized modulation phase versus normalized Stokes frequency deviation from resonance for two values of G 0 : 1.41 (upper curve, circles) and 0.99 (lower curve, triangles).

Fig. 3
Fig. 3

Modulation phase (normalized) versus the (unnormalized) change in Stokes carrier frequency in the region of highest sensitivity for two modulation frequencies: 1 kHz (triangles) and 100 Hz (circles). The frequency deviation δ f s = δ ω s / 2 π is taken relative to an arbitrary midpoint in the graphs where the slope is maximum. The solid curves are an aid to the viewer.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( z , t ) = I 1 0 + i 1 cos ( K z + Ω t ) ,
I 2 ( z , t ) = I 2 0 ( z ) + i 2 ( z ) cos ( K z + Θ B Ω t ) .
Θ B = atan ( G ^ K L / ( 1 G ^ ) ) ,
G = G 0 [ 1 + ( 2 δ ω s Γ B ) 2 ] 1 .
d Θ B d ( δ ω s ) d Θ B d G ^ d G ^ d ( δ ω s ) .
Δ Θ B 1.5 G ^ 0 1 n · f mod · L G ^ 0 · Δ ( δ ω s ) .

Metrics