Abstract

We compare theoretically the performance capabilities of Fabry–Perot and Gires–Tournois resonators when used for adiabatic wavelength conversion. It is shown that the Gires–Tournois device will exhibit superior performance and is able to convert the wavelength of optical pulses with >74% efficiency while nearly preserving their temporal duration.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Preble, Q. Xu, and M. Lipson, Nat. Photon. 1, 293 (2007).
    [CrossRef]
  2. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, Opt. Express 15, 11472 (2007).
    [CrossRef] [PubMed]
  3. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
    [CrossRef] [PubMed]
  4. Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, Opt. Express 14, 7270 (2006).
    [CrossRef] [PubMed]
  5. T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010).
    [CrossRef]
  6. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, Opt. Express 16, 17076 (2008).
    [CrossRef] [PubMed]
  7. M. Notomi and S. Mitsugi, Phys. Rev. A 73, 051803 (2006).
    [CrossRef]
  8. S. F. Preble and M. Lipson, in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMC5.
  9. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  10. B. A. Daniel, D. N. Maywar, and G. P. Agrawal, J. Opt. Soc. Am. B 28, 2207 (2011).
    [CrossRef]

2011 (1)

2010 (1)

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010).
[CrossRef]

2009 (1)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (2)

Agrawal, G. P.

Andreani, L. C.

Beggs, D. M.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010).
[CrossRef]

Carusotto, I.

Daniel, B. A.

Gaburro, Z.

Ghulinyan, M.

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Kampfrath, T.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010).
[CrossRef]

Krauss, T. F.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, Opt. Express 16, 17076 (2008).
[CrossRef] [PubMed]

Kuipers, L.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef] [PubMed]

Li, J.

Lipson, M.

S. F. Preble, Q. Xu, and M. Lipson, Nat. Photon. 1, 293 (2007).
[CrossRef]

S. F. Preble and M. Lipson, in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMC5.

Maywar, D. N.

McCutcheon, M. W.

Melloni, A.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010).
[CrossRef]

Mitsugi, S.

M. Notomi and S. Mitsugi, Phys. Rev. A 73, 051803 (2006).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef] [PubMed]

M. Notomi and S. Mitsugi, Phys. Rev. A 73, 051803 (2006).
[CrossRef]

O’Faolain, L.

Pattantyus-Abraham, A. G.

Pavesi, L.

Preble, S. F.

S. F. Preble, Q. Xu, and M. Lipson, Nat. Photon. 1, 293 (2007).
[CrossRef]

S. F. Preble and M. Lipson, in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMC5.

Recati, A.

Riboli, F.

Rieger, G. W.

Tanabe, T.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef] [PubMed]

Taniyama, H.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef] [PubMed]

White, T. P.

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, Opt. Express 16, 17076 (2008).
[CrossRef] [PubMed]

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, Nat. Photon. 1, 293 (2007).
[CrossRef]

Young, J. F.

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

S. F. Preble, Q. Xu, and M. Lipson, Nat. Photon. 1, 293 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (2)

T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010).
[CrossRef]

M. Notomi and S. Mitsugi, Phys. Rev. A 73, 051803 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009).
[CrossRef] [PubMed]

Other (2)

S. F. Preble and M. Lipson, in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMC5.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Examples of Fabry–Perot-type resonators.

Fig. 2
Fig. 2

Examples of Gires–Tournois-type resonators.

Fig. 3
Fig. 3

Output spectra for an optical pulse undergoing AWC in two different types of resonators. The dashed and solid curves represent the output spectra in Fabry–Perot and Gires–Tournois resonators, respectively.

Fig. 4
Fig. 4

Time-domain output pulse shapes in the case of a Gires–Tournois resonator. The dashed and solid curves show the output pulse before and after passing through a Gaussian filter to remove the spectral peak at the input frequency.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 τ ph = 1 τ ph i + 1 τ ph e ,
τ ph τ ph e .
[ 1 + Γ ( t ) ] d a d t = i ω q a ( 1 2 τ ph + d Γ d t ) a + κ A in ( t ) ,
A r = A in + κ a .
A t = κ t a .
κ = ( M τ ph e ) 1 / 2 ,
A in ( t ) = e 1 2 ( t / T 0 ) 2 i ω 0 t .

Metrics