Abstract

Optical techniques for in vivo measurement of blood flow velocity are not quite applicable for determination of velocity of individual cells or nanoparticles. Here, we describe a photoacoustic time-of-flight method to measure the velocity of individual absorbing objects by using single and multiple laser beams. Its capability was demonstrated in vitro on blood vessel phantom and in vivo on an animal (mouse) model for estimating velocity of gold nanorods, melanin nanoparticles, erythrocytes, leukocytes, and circulating tumor cells in the broad range of flow velocity from 0.1mm/s to 14cm/s. Object velocity can be used to identify single cells circulating at different velocities or cell aggregates and to determine a cell’s location in a vessel cross-section.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser

Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Evgeny V. Shashkov, Ekaterina I. Galanzha, and Vladimir P. Zharov
Opt. Express 18(8) 8605-8620 (2010)

In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents

Vladimir P. Zharov, Ekaterina I. Galanzha, Evgeny V. Shashkov, Nicolai G. Khlebtsov, and Valery V. Tuchin
Opt. Lett. 31(24) 3623-3625 (2006)

Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery

Yulian A. Menyaev, Kai A. Carey, Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Ekaterina I. Galanzha, Jason S. Stumhofer, and Vladimir P. Zharov
Biomed. Opt. Express 7(9) 3643-3658 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription