Abstract

This Letter presents a method for fabricating concave microlens arrays of UV-curable polymer by using the dielectrophoresis (DEP) force. The DEP force, generated by a voltage between the patterned conductive template and substrate, acting on the polymer–air interface, can drive the dielectric liquid polymer into the template holes and change the shape of the polymer–air interface. The upper polymer surface of fabricated microlens is super smooth, which can reduce optical noise. The upper surface geometry is measured approximately as parabolic in general, which can lead to a negligible spherical aberration, compared to spherical surfaces.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).
    [CrossRef]
  2. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).
    [CrossRef] [PubMed]
  3. P. Ruffieux, T. Scharf, I. Philipoussis, H. P. Herzig, R. Voelkel, and K. J. Weible, Opt. Express 16, 19541 (2008).
    [CrossRef] [PubMed]
  4. H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
    [CrossRef]
  5. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
    [CrossRef] [PubMed]
  6. T. Krupenkin, S. Yang, and P. Mach, Appl. Phys. Lett. 82, 316 (2003).
    [CrossRef]
  7. H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, Opt. Express 16, 14954 (2008).
    [CrossRef] [PubMed]
  8. M. Born and E. Wolf, in Principles of Optics, 7th ed.(Cambridge University, 1999), p. 211.
  9. X. Li, J. Y. Shao, H. M. Tian, Y. C. Ding, and X. Li, J. Micromech. Microeng. 21, 065010 (2011).
    [CrossRef]

2011 (1)

X. Li, J. Y. Shao, H. M. Tian, Y. C. Ding, and X. Li, J. Micromech. Microeng. 21, 065010 (2011).
[CrossRef]

2010 (1)

2009 (1)

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

2008 (2)

2003 (1)

T. Krupenkin, S. Yang, and P. Mach, Appl. Phys. Lett. 82, 316 (2003).
[CrossRef]

1996 (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).
[CrossRef]

1995 (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).
[CrossRef] [PubMed]

Bian, H.

Born, M.

M. Born and E. Wolf, in Principles of Optics, 7th ed.(Cambridge University, 1999), p. 211.

Brown, P. O.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).
[CrossRef] [PubMed]

Chen, F.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef] [PubMed]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Davis, R. W.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).
[CrossRef] [PubMed]

Ding, Y. C.

X. Li, J. Y. Shao, H. M. Tian, Y. C. Ding, and X. Li, J. Micromech. Microeng. 21, 065010 (2011).
[CrossRef]

Herzig, H. P.

Hou, C.

Hou, X.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef] [PubMed]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Kohn, V.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).
[CrossRef]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, Appl. Phys. Lett. 82, 316 (2003).
[CrossRef]

Lengeler, B.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).
[CrossRef]

Li, X.

X. Li, J. Y. Shao, H. M. Tian, Y. C. Ding, and X. Li, J. Micromech. Microeng. 21, 065010 (2011).
[CrossRef]

X. Li, J. Y. Shao, H. M. Tian, Y. C. Ding, and X. Li, J. Micromech. Microeng. 21, 065010 (2011).
[CrossRef]

Liang, W.

Liu, H.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef] [PubMed]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, Appl. Phys. Lett. 82, 316 (2003).
[CrossRef]

Philipoussis, I.

Ren, H.

Ruffieux, P.

Scharf, T.

Schena, M.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).
[CrossRef] [PubMed]

Shalon, D.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).
[CrossRef] [PubMed]

Shao, J. Y.

X. Li, J. Y. Shao, H. M. Tian, Y. C. Ding, and X. Li, J. Micromech. Microeng. 21, 065010 (2011).
[CrossRef]

Si, J.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef] [PubMed]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Snigirev, A.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).
[CrossRef]

Snigireva, I.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).
[CrossRef]

Tian, H. M.

X. Li, J. Y. Shao, H. M. Tian, Y. C. Ding, and X. Li, J. Micromech. Microeng. 21, 065010 (2011).
[CrossRef]

Voelkel, R.

Wang, X.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef] [PubMed]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Weible, K. J.

Wolf, E.

M. Born and E. Wolf, in Principles of Optics, 7th ed.(Cambridge University, 1999), p. 211.

Wu, S.-T.

Xianyu, H.

Xu, S.

Yang, Q.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef] [PubMed]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, Appl. Phys. Lett. 82, 316 (2003).
[CrossRef]

Zhang, D.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

T. Krupenkin, S. Yang, and P. Mach, Appl. Phys. Lett. 82, 316 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

X. Li, J. Y. Shao, H. M. Tian, Y. C. Ding, and X. Li, J. Micromech. Microeng. 21, 065010 (2011).
[CrossRef]

Nature (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).
[CrossRef]

Opt. Commun. (1)

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Opt. Express (3)

Science (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Science 270, 467 (1995).
[CrossRef] [PubMed]

Other (1)

M. Born and E. Wolf, in Principles of Optics, 7th ed.(Cambridge University, 1999), p. 211.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration for fabricating concave MLAs by DEP force in template holes. (a) Implementation of the process; (b) a slight contact between the template and polymer film; (c) applying of a voltage between the template and the substrate lasting for about 30 s , and curing the prepolymer via UV exposure; (d) separation of the template from the cured polymer. The sag height, from the top edge of the microlens to the bottom of the concave surface, is termed H s ; the edge height, from the top edge to the flat surface, is termed H e .

Fig. 2
Fig. 2

SEM images of concave MLAs and their cross-section profiles measured via laser scanning confocal microscopy (LSCM). (a)–(d) Microlenses are fabricated by applying 10 Hz -square-wave voltages of 0 V pp , 50 V pp , 100 V pp , and 200 V pp , respectively; (e)–(h) their cross profiles are measured by LSCM, respectively; (e) a microlens array fabricated by applying a voltage of 100 V pp . The diameter of the microlens is 29.2 μm and the R a roughness of the concave surfaces is less than 0.2 nm when measured using AFM for an area of 2 μm × 2 μm on a sag surface.

Fig. 3
Fig. 3

Relationship between surface shape and applied voltage. (a) The simulation results of the electric field strength at the polymer–air interface when applying different voltages; (b) the variation tendency of microlens’ height (edge height and sag height) with the applied voltage; (c) the measured profiles (symbols) of microlenses and their conic sections fit (curves), where the fitting errors are 4.94%, 4.91%, and 2.25% when voltages of 50 V pp , 100 V pp , and 200 V pp are applied, respectively.

Fig. 4
Fig. 4

Imaging and focal characterizations of the MLAs. (a) The optical characterization system for the MLAs; (b) the false images of the letter “A” are viewed with the CCD camera using a sample fabricated by applying a voltage of 100 V pp ; (c) the false bright focal spots are observed with the CCD and the focal length is measured about 35 μm . The scale bar is 50 μm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f DEP = 1 2 ( ε p ε 0 ) ( E · E ) ,

Metrics