Abstract

The light transmission fluctuation method is a simple and useful method for in situ and in-line measurement of particle size and concentration. To accomplish the measurement, it is necessary to know the intensity of incident light or background signal I0. However, measuring I0 during in-line applications is hard. In this Letter, an algorithm is proposed to indirectly measure I0 based on the variation of transmitted light signals. Experiments have been carried out to verify the algorithm and the maximum deviation between premeasured I0 and indirectly measured I0 is less than 2.5%.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Shifrin, Physical Optics of Ocean Water (AIP, 1983).
  2. J. Gregory, J. Colloid Interface Sci. 105, 357 (1985).
    [CrossRef]
  3. X. Cai, Y. Pan, O. Xin, W. Wu, J. Yu, and J. Hu, Proc. CSEE 21, 83 (2001).
  4. H. C. Van de Hulst, Light Scattering by Small Particles(Dover, 1981).
  5. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  6. G. A. Korn and M. T. Korn, Manual of Mathematics (McGraw-Hill, 1967).
  7. S. L. Eriksson, Adv. Appl. Clifford Algebras 17, 437 (2007).
    [CrossRef]

2007

S. L. Eriksson, Adv. Appl. Clifford Algebras 17, 437 (2007).
[CrossRef]

2001

X. Cai, Y. Pan, O. Xin, W. Wu, J. Yu, and J. Hu, Proc. CSEE 21, 83 (2001).

1985

J. Gregory, J. Colloid Interface Sci. 105, 357 (1985).
[CrossRef]

Cai, X.

X. Cai, Y. Pan, O. Xin, W. Wu, J. Yu, and J. Hu, Proc. CSEE 21, 83 (2001).

Eriksson, S. L.

S. L. Eriksson, Adv. Appl. Clifford Algebras 17, 437 (2007).
[CrossRef]

Gregory, J.

J. Gregory, J. Colloid Interface Sci. 105, 357 (1985).
[CrossRef]

Hu, J.

X. Cai, Y. Pan, O. Xin, W. Wu, J. Yu, and J. Hu, Proc. CSEE 21, 83 (2001).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

Korn, G. A.

G. A. Korn and M. T. Korn, Manual of Mathematics (McGraw-Hill, 1967).

Korn, M. T.

G. A. Korn and M. T. Korn, Manual of Mathematics (McGraw-Hill, 1967).

Pan, Y.

X. Cai, Y. Pan, O. Xin, W. Wu, J. Yu, and J. Hu, Proc. CSEE 21, 83 (2001).

Shifrin, K. S.

K. S. Shifrin, Physical Optics of Ocean Water (AIP, 1983).

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles(Dover, 1981).

Wu, W.

X. Cai, Y. Pan, O. Xin, W. Wu, J. Yu, and J. Hu, Proc. CSEE 21, 83 (2001).

Xin, O.

X. Cai, Y. Pan, O. Xin, W. Wu, J. Yu, and J. Hu, Proc. CSEE 21, 83 (2001).

Yu, J.

X. Cai, Y. Pan, O. Xin, W. Wu, J. Yu, and J. Hu, Proc. CSEE 21, 83 (2001).

Adv. Appl. Clifford Algebras

S. L. Eriksson, Adv. Appl. Clifford Algebras 17, 437 (2007).
[CrossRef]

J. Colloid Interface Sci.

J. Gregory, J. Colloid Interface Sci. 105, 357 (1985).
[CrossRef]

Proc. CSEE

X. Cai, Y. Pan, O. Xin, W. Wu, J. Yu, and J. Hu, Proc. CSEE 21, 83 (2001).

Other

H. C. Van de Hulst, Light Scattering by Small Particles(Dover, 1981).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

G. A. Korn and M. T. Korn, Manual of Mathematics (McGraw-Hill, 1967).

K. S. Shifrin, Physical Optics of Ocean Water (AIP, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of light extinction.

Fig. 2
Fig. 2

Principle of light fluctuation.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup.

Fig. 4
Fig. 4

Microscopy images of glass beads and pulverized coal.

Fig. 5
Fig. 5

Signals of transmitted light.

Tables (2)

Tables Icon

Table 1 Measurement Result of Glass Beads

Tables Icon

Table 2 Measurement Results of Pulverized Coal

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I / I 0 = exp ( π 4 L N D 2 E ( λ , m , D ) ) ,
I / I 0 = exp ( π 2 L N D 2 ) .
v = N A L ,
I / I 0 = exp ( v C / A ) ,
P ( n ) = exp ( v ) v n / n ! .
I rms = I 0 exp ( v C / A ) sinh ( v 1 2 C / A ) = I sinh ( v 1 2 C / A ) .
I rms = I 0 exp ( v C / A ) ( v 1 2 C / A ) = I ( v 1 2 C / A ) .
ln ( I 0 / I ) / ( I rms / I ) = v 1 2 .
I rms 1 = I 1 ( v 1 1 2 C / A ) , I rms 2 = I 2 ( v 2 1 2 C / A ) ,
( I rms 1 / I 1 ) / ( I rms 2 / I 2 ) = ( v 1 / v 2 ) 1 2 .
ln ( I 1 / I 0 ) ln ( I 2 / I 0 ) = v 1 v 2 .
ln ( I 1 / I 0 ) ln ( I 2 / I 0 ) = ( I rms 1 / I 1 I rms 2 / I 2 ) 2 .

Metrics