Abstract

Optical tweezers have proven to be very useful in various scientific fields, from biology to nanotechnology. In this Letter we show, both by theory and experiment, that the interference intensity pattern at the back focal plane of the condenser consists of two distinguishable areas with anticorrelated intensity changes when the bead is moved in the axial direction. We show that the space angle defining the border of two areas linearly depends on the NA of the objective. We also propose a new octant photodiode, which could significantly improve the axial resolution compared to the commonly used quadrant photodiode technique.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase contrast optical tweezers

Ali Mahmoudi and S. Nader S. Reihani
Opt. Express 18(17) 17983-17996 (2010)

Back-focal-plane displacement detection using side-scattered light in dual-beam fiber-optic traps

Wei Xiong, Guangzong Xiao, Xiang Han, Jinhua Zhou, Xinlin Chen, and Hui Luo
Opt. Express 25(8) 9449-9457 (2017)

Simultaneous three-dimensional tracking of individual signals from multi-trap optical tweezers using fast and accurate photodiode detection

Dino Ott, S. Nader, S. Reihani, and Lene B. Oddershede
Opt. Express 22(19) 23661-23672 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription