Abstract

We report the realization of a fiber-optic static strain sensor with ultrahigh resolution and large dynamic range for the applications of geophysical research. The sensor consists of a pair of fiber-Bragg-grating-based Fabry–Perot interferometers as sensor heads for strain sensing and reference, respectively. The Pound–Drever–Hall technique is employed to interrogate the sensor heads, and a cross-correlation algorithm is used to figure out the strain information with high precision. Static strain resolution down to 5.8 nanostrains is demonstrated. The dynamic range can be extended up to hundreds of microstrains, and the measuring period is a few tens of seconds.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lissak, A. Arie, and M. Tur, Opt. Lett. 23, 1930 (1998).
    [CrossRef]
  2. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, Opt. Lett. 30, 1923 (2005).
    [CrossRef] [PubMed]
  3. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, Opt. Express 16, 1945 (2008).
    [CrossRef] [PubMed]
  4. A. Arie, B. Lissak, and M. Tur, J. Lightwave Technol. 17, 1849 (1999).
    [CrossRef]
  5. Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
    [CrossRef]
  6. Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7753, 77537P (2011).
    [CrossRef]
  7. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
    [CrossRef]
  8. C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
    [CrossRef]

2011 (1)

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7753, 77537P (2011).
[CrossRef]

2010 (1)

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
[CrossRef]

2008 (1)

2007 (1)

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

2005 (1)

1999 (1)

1998 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
[CrossRef]

Arie, A.

Chow, J. H.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
[CrossRef]

Galzerano, G.

Gatti, D.

Gray, M. B.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
[CrossRef]

He, Z.

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7753, 77537P (2011).
[CrossRef]

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
[CrossRef]

Hotate, K.

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7753, 77537P (2011).
[CrossRef]

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
[CrossRef]

Huang, C.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Janner, D.

Jing, W. C.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
[CrossRef]

Laporta, P.

Lissak, B.

Littler, I. C. M.

Liu, K.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Liu, Q.

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7753, 77537P (2011).
[CrossRef]

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
[CrossRef]

Longhi, S.

McClelland, D. E.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
[CrossRef]

Peng, G. D.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Tokunaga, T.

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7753, 77537P (2011).
[CrossRef]

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
[CrossRef]

Tur, M.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
[CrossRef]

Zhang, Y. M.

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97(1983).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Huang, W. C. Jing, K. Liu, Y. M. Zhang, and G. D. Peng, IEEE Photon. Technol. Lett. 19, 707 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (2)

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7653, 76530W (2010).
[CrossRef]

Q. Liu, Z. He, T. Tokunaga, and K. Hotate, Proc. SPIE 7753, 77537P (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System configuration: CP, coupler; PM, phase modulator; CIR, circulator; PD, photodiode; FG, function generator; PC, polarization controller; A/D, analog-to-digital converter; Mul, multiplier; LPF, low-pass filter.

Fig. 2
Fig. 2

Measured output signals from the FFPIs. The dual resonance peaks are due to the existence of two polarization modes in the FFPI, where the circled small ones are the polarization modes suppressed by the PC.

Fig. 3
Fig. 3

Experimental results: (a) detected resonance wavelengths of two FFPIs, respectively, and (b) the resonance difference extracted by cross-correlation.

Fig. 4
Fig. 4

Part of the extracted resonance difference [from Fig. 3b]. The standard deviation for all measured data after temperature compensation is 5.4 fm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C j = i = N N S 1 ( λ i + j ) S 2 ( λ i ) .

Metrics