Abstract

We demonstrate contradirectional couplers in silicon-on-insulator rib waveguides using a CMOS compatible technology, in which a periodic dielectric perturbation is introduced in the coupling region between two different-sized rib waveguides. This structure enables high fabrication tolerances for narrow-bandwidth add-drop filters, using commercially available deep-ultraviolet lithography, that do not suffer from having a free spectral range. The simulation using coupled-mode theory and mode-profile calculations shows good agreement with experiment. A narrow bandwidth of 0.35nm and a low loss of less than 1dB have been achieved experimentally.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. V. Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
    [Crossref]
  2. W. Shi, R. Vafaei, M. Á. G. Torres, N. A. F. Jaeger, and L. Chrostowski, Opt. Lett. 35, 2901 (2010).
    [Crossref] [PubMed]
  3. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, Opt. Lett. 35, 2526 (2010).
    [Crossref] [PubMed]
  4. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007).
  5. X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, IEEE Photon. Technol. Lett. 23, 290 (2011).
  6. I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.
  7. M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, and A. Karlsson, Appl. Phys. Lett. 83, 5121 (2003).
    [Crossref]
  8. D. T. H. Tan, K. Ikeda, and Y. Fainman, Appl. Phys. Lett. 95, 141109 (2009).
    [Crossref]
  9. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, Opt. Express 19, 2401(2011).
    [Crossref] [PubMed]
  10. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, J. Lightwave Technol. 23, 401 (2005).
    [Crossref]
  11. P. Yeh and H. F. Taylor, Appl. Opt. 19, 2848 (1980).
    [Crossref] [PubMed]

2011 (2)

2010 (3)

2009 (1)

D. T. H. Tan, K. Ikeda, and Y. Fainman, Appl. Phys. Lett. 95, 141109 (2009).
[Crossref]

2005 (1)

2003 (1)

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, and A. Karlsson, Appl. Phys. Lett. 83, 5121 (2003).
[Crossref]

1980 (1)

Anand, S.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, and A. Karlsson, Appl. Phys. Lett. 83, 5121 (2003).
[Crossref]

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. V. Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, J. Lightwave Technol. 23, 401 (2005).
[Crossref]

Beckx, S.

Bienstman, P.

Bock, P. J.

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. V. Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, J. Lightwave Technol. 23, 401 (2005).
[Crossref]

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. V. Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[Crossref]

Bruns, J.

I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.

Campenhout, J. V.

Cheben, P.

Chrostowski, L.

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, IEEE Photon. Technol. Lett. 23, 290 (2011).

W. Shi, R. Vafaei, M. Á. G. Torres, N. A. F. Jaeger, and L. Chrostowski, Opt. Lett. 35, 2901 (2010).
[Crossref] [PubMed]

Cunningham, J. E.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. V. Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[Crossref]

Delâge, A.

Densmore, A.

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. V. Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, J. Lightwave Technol. 23, 401 (2005).
[Crossref]

Fainman, Y.

Gajda, A.

I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.

Giuntoni, I.

I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.

Hall, T. J.

Ikeda, K.

Jaeger, N. A. F.

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, IEEE Photon. Technol. Lett. 23, 290 (2011).

W. Shi, R. Vafaei, M. Á. G. Torres, N. A. F. Jaeger, and L. Chrostowski, Opt. Lett. 35, 2901 (2010).
[Crossref] [PubMed]

Janz, S.

Jaskorzynska, B.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, and A. Karlsson, Appl. Phys. Lett. 83, 5121 (2003).
[Crossref]

Karlsson, A.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, and A. Karlsson, Appl. Phys. Lett. 83, 5121 (2003).
[Crossref]

Krishnamoorthy, A. V.

Lamontagne, B.

Lapointe, J.

Luo, Y.

Luyssaert, B.

Mizrahi, A.

Mulot, M.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, and A. Karlsson, Appl. Phys. Lett. 83, 5121 (2003).
[Crossref]

Nezhad, M. P.

Petermann, K.

I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.

Qiu, M.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, and A. Karlsson, Appl. Phys. Lett. 83, 5121 (2003).
[Crossref]

Raj, K.

Schmid, J. H.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. V. Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[Crossref]

Shi, W.

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, IEEE Photon. Technol. Lett. 23, 290 (2011).

W. Shi, R. Vafaei, M. Á. G. Torres, N. A. F. Jaeger, and L. Chrostowski, Opt. Lett. 35, 2901 (2010).
[Crossref] [PubMed]

Shubin, I.

Stolarek, D.

I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.

Swillo, M.

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, and A. Karlsson, Appl. Phys. Lett. 83, 5121 (2003).
[Crossref]

Taillaert, D.

Tan, D. T. H.

Taylor, H. F.

Thourhout, D. V.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. V. Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, J. Lightwave Technol. 23, 401 (2005).
[Crossref]

Tillack, B.

I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.

Torres, M. Á. G.

Vafaei, R.

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, IEEE Photon. Technol. Lett. 23, 290 (2011).

W. Shi, R. Vafaei, M. Á. G. Torres, N. A. F. Jaeger, and L. Chrostowski, Opt. Lett. 35, 2901 (2010).
[Crossref] [PubMed]

Wang, X.

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, IEEE Photon. Technol. Lett. 23, 290 (2011).

Wiaux, V.

Winzer, G.

I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.

Xu, D.-X.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007).

Yeh, P.

P. Yeh and H. F. Taylor, Appl. Opt. 19, 2848 (1980).
[Crossref] [PubMed]

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007).

Zamek, S.

Zheng, X.

Zimmermann, L.

I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, and A. Karlsson, Appl. Phys. Lett. 83, 5121 (2003).
[Crossref]

D. T. H. Tan, K. Ikeda, and Y. Fainman, Appl. Phys. Lett. 95, 141109 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. V. Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, IEEE Photon. Technol. Lett. 23, 290 (2011).

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Other (2)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007).

I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OThJ5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Contradirectional couplers in SOI rib waveguides: (a) cross-sectional geometry with the calculated intensity distributions of the fundamental TE-like modes of the rib waveguides; (b) top view of the device geometry; (c) SEM image showing the parabolically broadening transition from the photonic wires to the rib waveguides; (d) SEM image showing the corrugations of a device with the propagation constants labeled and the directions of propagation indicated.

Fig. 2
Fig. 2

Calculated effective indices of the fundamental TE-like modes of the rib waveguides. n b and λ b are the effective-index and the Bragg wavelength, respectively, for W b = 1 μm .

Fig. 3
Fig. 3

Measured spectra of a device with [ D , G ] = [ 220 nm , 1 μm ] . The input power is 1 mW with an insertion loss of 17 dB due to the fiber-coupling to the FGCs. The inset shows the zoomed-in drop-port spectrum and the simulated results.

Fig. 4
Fig. 4

Dielectric perturbation distribution along the longitudinal direction. The inset is the SEM image of the tilted cross-section of a device.

Fig. 5
Fig. 5

Measured drop-port spectra with dif ferent corrugation parameters: (a)  [ D , G ] = [ 220 nm , 800 nm ] ; (b)  [ 220 nm , 1 μm ] ; and (c)  [ 120 nm , 1 μm ] .

Fig. 6
Fig. 6

Measured and simulated drop-port bandwidth versus coupler gap for various sizes of corrugation, showing the inverse exponential relationship (numerical modeling was only performed for the D = 220 nm devices since FIB-SEM cross-sectional images were only available for these devices).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η = | κ | 2 sinh 2 ( s L ) s 2 cosh 2 ( s L ) + ( Δ β / 2 ) 2 sinh 2 ( s L ) ,
Δ ε ( x , y , z ) = S ( z ) Δ ε p ( x , y ) .
κ = π c ε 1 2 λ D E a * ( x , y ) · Δ ε p ( x , y ) E b ( x , y ) d x d y ,

Metrics