Abstract

We show that the spectral broadening of the pump pulse through self-phase modulation in a time-domain distributed Brillouin sensor has a considerably detrimental effect in the measurement, especially in the case of long distances and high-resolution pulses. Using 30ns pump pulses with peak power of 276mW, self-phase modulation leads to a doubling of the effective gain linewidth after some 20km, which is equivalent to a contrast loss of 2dB in the measurement. The impact is higher for shorter pulses (higher resolution). The theoretical modeling is fully confirmed by experimental results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kurashima, T. Horuguchi, and M. Tateda, Opt. Lett. 15, 1038 (1990).
    [CrossRef] [PubMed]
  2. M. Nikles, L. Thévenaz, and P. A. Robert, Opt. Lett. 21, 758 (1996).
    [CrossRef] [PubMed]
  3. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Commun. 168, 95 (1999).
    [CrossRef]
  4. H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
    [CrossRef]
  5. S. M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, and M. González-Herráez, and L. Thévenaz, Proc. SPIE 7653, 76532U (2010).
  6. R. W. Boyd, Nonlinear Optics, 4th ed. (Academic, 2008).
  7. M. N. Alahbabi, Y. T. Cho, T. P. Newson, P. C. Wait, and A. H. Hartog, J. Opt. Soc. Am. B 21, 1156 (2004).
    [CrossRef]
  8. S. Diaz, S. M. Foaleng, M. Lopez-Amo, and L. Thévenaz, IEEE Sensors J. 8, 1268 (2008).
    [CrossRef]

2008 (1)

S. Diaz, S. M. Foaleng, M. Lopez-Amo, and L. Thévenaz, IEEE Sensors J. 8, 1268 (2008).
[CrossRef]

2004 (1)

1999 (1)

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Commun. 168, 95 (1999).
[CrossRef]

1996 (1)

1994 (1)

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

1990 (1)

Alahbabi, M. N.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 4th ed. (Academic, 2008).

Cho, Y. T.

Diaz, S.

S. Diaz, S. M. Foaleng, M. Lopez-Amo, and L. Thévenaz, IEEE Sensors J. 8, 1268 (2008).
[CrossRef]

Foaleng, S. M.

S. Diaz, S. M. Foaleng, M. Lopez-Amo, and L. Thévenaz, IEEE Sensors J. 8, 1268 (2008).
[CrossRef]

S. M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, and M. González-Herráez, and L. Thévenaz, Proc. SPIE 7653, 76532U (2010).

Furukawa, S.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

González-Herráez, M.

S. M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, and M. González-Herráez, and L. Thévenaz, Proc. SPIE 7653, 76532U (2010).

Hartog, A. H.

Horuguchi, T.

Izumita, H.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

Jackson, D. A.

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Commun. 168, 95 (1999).
[CrossRef]

Koyamada, Y.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

Kurashima, T.

Lecoeuche, V.

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Commun. 168, 95 (1999).
[CrossRef]

Lopez-Amo, M.

S. Diaz, S. M. Foaleng, M. Lopez-Amo, and L. Thévenaz, IEEE Sensors J. 8, 1268 (2008).
[CrossRef]

Martin-Lopez, S.

S. M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, and M. González-Herráez, and L. Thévenaz, Proc. SPIE 7653, 76532U (2010).

Newson, T. P.

Nikles, M.

Pannell, C. N.

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Commun. 168, 95 (1999).
[CrossRef]

Robert, P. A.

Rodríguez-Barrios, F.

S. M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, and M. González-Herráez, and L. Thévenaz, Proc. SPIE 7653, 76532U (2010).

Sankawa, I.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

Tateda, M.

Thévenaz, L.

S. Diaz, S. M. Foaleng, M. Lopez-Amo, and L. Thévenaz, IEEE Sensors J. 8, 1268 (2008).
[CrossRef]

M. Nikles, L. Thévenaz, and P. A. Robert, Opt. Lett. 21, 758 (1996).
[CrossRef] [PubMed]

S. M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, and M. González-Herráez, and L. Thévenaz, Proc. SPIE 7653, 76532U (2010).

Wait, P. C.

Webb, D. J.

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Commun. 168, 95 (1999).
[CrossRef]

IEEE Sensors J. (1)

S. Diaz, S. M. Foaleng, M. Lopez-Amo, and L. Thévenaz, IEEE Sensors J. 8, 1268 (2008).
[CrossRef]

J. Lightwave Technol. (1)

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, Opt. Commun. 168, 95 (1999).
[CrossRef]

Opt. Lett. (2)

Other (2)

S. M. Foaleng, F. Rodríguez-Barrios, S. Martin-Lopez, and M. González-Herráez, and L. Thévenaz, Proc. SPIE 7653, 76532U (2010).

R. W. Boyd, Nonlinear Optics, 4th ed. (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the setup: EDFA, erbium-doped fiber amplifier; EOM, electro-optic modulator; FBG, fiber Bragg grating ( 0.1 nm spectral width); PC, polarization controller; VOA, variable optical attenuator; and PID, proportional- integrator circuit.

Fig. 2
Fig. 2

Experimental demonstration (solid lines) and theoretical analysis (dotted curves) of the gain spectrum broadening due to SPM along a 25.5 km SMF (a) for different peak powers of a 30 ns FWHM Gaussian pulse and (b) comparing 30 ns FWHM Gaussian and rectangular pulses of identical energy (peak power of rectangular pulse is 222 mW ).

Fig. 3
Fig. 3

Brillouin gain spectral width measured close to the fiber input ( 100 m ) and at the fiber output ( 25.5 km ) using a 30 ns Gaussian pulse: (a) linear dependence on the pump peak power, showing that the effect of SPM is observed only at the distant end and (b) inverse dependence of the gain linewidth on the pulse width, showing the excess broadening due to SPM at the far end (pump power is 153 mW ).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ( t ) = d ϕ NL ( z , t ) d t = n 2 ω c 0 z d I ( t ) d t .
Δ ω ( t ) = 4 n 2 ω c 0 z I 0 t 2 τ 2 exp ( 2 t 2 / τ 2 ) = 4 γ z P t τ 2 exp ( 2 t 2 / τ 2 ) ,
g SPM ( Δ ν ) = FT { A exp ( t 2 / τ 2 ) Gaussian amplitude term exp [ i γ L eff P exp ( 2 t 2 / τ 2 ) ] SPM term } ,

Metrics