Abstract

A specific scheme is used for fiber delivery of ultrashort pulses using conventional elements. Starting from a standard femtosecond Ti:Al2O3 oscillator (150fs @ 830nm), perfectly compressed ultrashort pulses with a duration of 45fs are produced at the output of a standard two meter long single-mode fiber. The setup allows compensating independently and simultaneously second and third orders of chromatic dispersion as well as management of self-phase modulation in the fiber. It includes an optimized dispersion compensation line made of the assembly of diffraction gratings and prisms. The unsurpassed performances of the device are experimentally and numerically highlighted. Fiber delivery of sub-30 fs multinanojoule pulses is discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, Opt. Express 12, 6122 (2004).
    [CrossRef] [PubMed]
  2. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, Opt. Express 17, 1240 (2009).
    [CrossRef] [PubMed]
  3. K. G. Jespersen, T. Le, L. Grüner-Nielsen, D. Jakobsen, M. E. V. Pedersen, M. B. Smedemand, S. R. Keiding, and B. Palsdottir, Opt. Express 18, 7798 (2010).
    [CrossRef] [PubMed]
  4. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, Opt. Lett. 30, 3225 (2005).
    [CrossRef] [PubMed]
  5. E. Suran, F. Louradour, A. Barthelemy, A. Kudlinski, G. Martinelli, Y. Quiquempois, and M. Douais, Opt. Lett. 34, 2536 (2009).
    [CrossRef] [PubMed]
  6. M. Lelek, E. Suran, F. Louradour, A. Barthelemy, B. Viellerobe, and F. Lacombe, Opt. Express 15, 10154(2007).
    [CrossRef] [PubMed]
  7. S. W. Clark, F. O. Ilday, and F. W. Wise, Opt. Lett. 26, 1320 (2001).
    [CrossRef]
  8. P. Tournois, Electron. Lett. 29, 1414 (1993).
    [CrossRef]
  9. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, Opt. Lett. 31, 3363 (2006).
    [CrossRef] [PubMed]
  10. F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevicius, and F. Krausz, Opt. Lett. 32, 2227 (2007).
    [CrossRef] [PubMed]
  11. V. Chauhan, P. Bowlan, J. Cohen, and R. Trebino, J. Opt. Soc. Am. B 27, 619 (2010).
    [CrossRef]
  12. L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, Appl. Phys. B 88, 515 (2007).
    [CrossRef]
  13. R. L. Fork, O. E. Martinez, and J. P. GordonOpt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]

2010

2009

2007

2006

2005

2004

2001

1993

P. Tournois, Electron. Lett. 29, 1414 (1993).
[CrossRef]

1984

Barthelemy, A.

Bowlan, P.

Chan, M.-C.

Chauhan, V.

Chen, L.-J.

Cheng, Z.

Clark, S. W.

Cohen, J.

Dimarcello, F. V.

Douais, M.

Durfee, C.

Fork, R. L.

Gaudiosi, D. M.

Ghalmi, S.

Gibson, E. A.

Gordon, J. P.

Grüner-Nielsen, L.

Guol, S.-H.

Hofer, M.

Huff, R.

Ilday, F. O.

Jakobsen, D.

Jasapara, J.

Jespersen, K. G.

Jimenez, R.

Kane, S.

Kapteyn, H. C.

Keiding, S. R.

Krausz, F.

Kudlinski, A.

Kuznetsova, L.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, Appl. Phys. B 88, 515 (2007).
[CrossRef]

Lacombe, F.

Le, T.

Lelek, M.

Louradour, F.

Marcinkevicius, A.

Martinelli, G.

Martinez, O. E.

Monberg, E.

Nomura, Y.

Palsdottir, B.

Pedersen, M. E. V.

Pervak, V.

Quiquempois, Y.

Ramachandran, S.

Smedemand, M. B.

Squier, J.

Stingl, A.

Sun, C.-K.

Suran, E.

Tai, S.-P.

Tavella, F.

Tempea, G.

Tournois, P.

P. Tournois, Electron. Lett. 29, 1414 (1993).
[CrossRef]

Trebino, R.

Tsai, T.-H.

Veisz, L.

Viellerobe, B.

Wise, F. W.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, Appl. Phys. B 88, 515 (2007).
[CrossRef]

S. W. Clark, F. O. Ilday, and F. W. Wise, Opt. Lett. 26, 1320 (2001).
[CrossRef]

Wisk, P.

Yan, M. F.

Appl. Phys. B

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, Appl. Phys. B 88, 515 (2007).
[CrossRef]

Electron. Lett.

P. Tournois, Electron. Lett. 29, 1414 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: a first standard single-mode fiber stretched the 150 fs laser pulse to 4 ps duration and also widened the laser spectrum from 10 nm to 70 nm . Then the grism dispersive line compensated for the normal dispersions of both fibers. Finally, the shaped pulse was launched into a 2-m-long standard single-mode fiber. With the use of interferometric autocorrelation, the delivered pulse duration was measured to be equal to 45 fs (FWHM), assuming a Gaussian shape. The final spectral width amounted to 23 nm .

Fig. 2
Fig. 2

Pulse spectrum evolution through the system: directly from the oscillator (dotted curve), after the first fiber (small dashed curve), after the second fiber in linear regime with 1.5 mW output power (large dashed curve), and after the second fiber in nonlinear regime 25 mW output power (solid curve).

Fig. 3
Fig. 3

Delivered pulse shapes. Left, experimental (thin solid curves) and calculated (dotted curves) IAC traces. The envelopes of only the calculated IACs are shown. Right, calculated pulse intensity profiles. Top, using the grism line. Bottom, using the grating line. These experimental and numerical results were obtained under identical conditions (e.g., 30 mW at the second fiber output) and with identical components.

Metrics