Abstract

We describe a pulsed terahertz (THz) emitter that uses a rapidly oscillating, high-voltage bias across electrodes insulated from a photoconductor. Because no carriers are injected from the electrodes, trap-enhanced electric fields do not form. The resulting uniform field allows excitation with a large laser spot, lowering the carrier density for a given pulse energy and increasing the efficiency of THz generation. Compared to a dc bias, less susceptibility to damage is observed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Reimann, Rep. Prog. Phys. 70, 1597 (2007).
    [CrossRef]
  2. G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
    [CrossRef]
  3. S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
    [CrossRef]
  4. J. H. Kim, A. Polley, and S. E. Ralph, Opt. Lett. 30, 2490 (2005).
    [CrossRef] [PubMed]
  5. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).
    [CrossRef]
  6. D. S. Kim and D. S. Citrin, J. Appl. Phys. 101, 053105 (2007).
    [CrossRef]
  7. D. S. Kim and D. S. Citrin, Appl. Phys. Lett. 88, 161117(2006).
    [CrossRef]
  8. D. A. Turton, G. H. Welsh, J. J. Carey, G. D. Reid, G. S. Beddard, and K. Wynne, Rev. Sci. Instrum. 77, 083111 (2006).
    [CrossRef]
  9. J. K. Wahlstrand, H. Zhang, and S. T. Cundiff, Appl. Phys. Lett. 96, 101104 (2010).
    [CrossRef]
  10. We have produced a higher bias amplitude of ∼400V at ∼44MHz, as described in .
  11. R. A. Forman, D. E. Aspnes, and M. Cardona, J. Phys. Chem. Solids 31, 227 (1970). See the appendix.
    [CrossRef]

2010 (1)

J. K. Wahlstrand, H. Zhang, and S. T. Cundiff, Appl. Phys. Lett. 96, 101104 (2010).
[CrossRef]

2007 (2)

K. Reimann, Rep. Prog. Phys. 70, 1597 (2007).
[CrossRef]

D. S. Kim and D. S. Citrin, J. Appl. Phys. 101, 053105 (2007).
[CrossRef]

2006 (2)

D. S. Kim and D. S. Citrin, Appl. Phys. Lett. 88, 161117(2006).
[CrossRef]

D. A. Turton, G. H. Welsh, J. J. Carey, G. D. Reid, G. S. Beddard, and K. Wynne, Rev. Sci. Instrum. 77, 083111 (2006).
[CrossRef]

2005 (2)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

J. H. Kim, A. Polley, and S. E. Ralph, Opt. Lett. 30, 2490 (2005).
[CrossRef] [PubMed]

2002 (1)

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
[CrossRef]

1991 (1)

S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
[CrossRef]

1970 (1)

R. A. Forman, D. E. Aspnes, and M. Cardona, J. Phys. Chem. Solids 31, 227 (1970). See the appendix.
[CrossRef]

Aspnes, D. E.

R. A. Forman, D. E. Aspnes, and M. Cardona, J. Phys. Chem. Solids 31, 227 (1970). See the appendix.
[CrossRef]

Beddard, G. S.

D. A. Turton, G. H. Welsh, J. J. Carey, G. D. Reid, G. S. Beddard, and K. Wynne, Rev. Sci. Instrum. 77, 083111 (2006).
[CrossRef]

Cardona, M.

R. A. Forman, D. E. Aspnes, and M. Cardona, J. Phys. Chem. Solids 31, 227 (1970). See the appendix.
[CrossRef]

Carey, J. J.

D. A. Turton, G. H. Welsh, J. J. Carey, G. D. Reid, G. S. Beddard, and K. Wynne, Rev. Sci. Instrum. 77, 083111 (2006).
[CrossRef]

Citrin, D. S.

D. S. Kim and D. S. Citrin, J. Appl. Phys. 101, 053105 (2007).
[CrossRef]

D. S. Kim and D. S. Citrin, Appl. Phys. Lett. 88, 161117(2006).
[CrossRef]

Cundiff, S. T.

J. K. Wahlstrand, H. Zhang, and S. T. Cundiff, Appl. Phys. Lett. 96, 101104 (2010).
[CrossRef]

Dekorsy, T.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Forman, R. A.

R. A. Forman, D. E. Aspnes, and M. Cardona, J. Phys. Chem. Solids 31, 227 (1970). See the appendix.
[CrossRef]

Grischkowsky, D.

S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
[CrossRef]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Kim, D. S.

D. S. Kim and D. S. Citrin, J. Appl. Phys. 101, 053105 (2007).
[CrossRef]

D. S. Kim and D. S. Citrin, Appl. Phys. Lett. 88, 161117(2006).
[CrossRef]

Kim, J. H.

Planken, P. C. M.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
[CrossRef]

Polley, A.

Ralph, S. E.

J. H. Kim, A. Polley, and S. E. Ralph, Opt. Lett. 30, 2490 (2005).
[CrossRef] [PubMed]

S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
[CrossRef]

Reid, G. D.

D. A. Turton, G. H. Welsh, J. J. Carey, G. D. Reid, G. S. Beddard, and K. Wynne, Rev. Sci. Instrum. 77, 083111 (2006).
[CrossRef]

Reimann, K.

K. Reimann, Rep. Prog. Phys. 70, 1597 (2007).
[CrossRef]

Schouten, R. N.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
[CrossRef]

Turton, D. A.

D. A. Turton, G. H. Welsh, J. J. Carey, G. D. Reid, G. S. Beddard, and K. Wynne, Rev. Sci. Instrum. 77, 083111 (2006).
[CrossRef]

van der Valk, N.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
[CrossRef]

Wahlstrand, J. K.

J. K. Wahlstrand, H. Zhang, and S. T. Cundiff, Appl. Phys. Lett. 96, 101104 (2010).
[CrossRef]

Welsh, G. H.

D. A. Turton, G. H. Welsh, J. J. Carey, G. D. Reid, G. S. Beddard, and K. Wynne, Rev. Sci. Instrum. 77, 083111 (2006).
[CrossRef]

Wenckebach, W. T.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
[CrossRef]

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Wynne, K.

D. A. Turton, G. H. Welsh, J. J. Carey, G. D. Reid, G. S. Beddard, and K. Wynne, Rev. Sci. Instrum. 77, 083111 (2006).
[CrossRef]

Zhang, H.

J. K. Wahlstrand, H. Zhang, and S. T. Cundiff, Appl. Phys. Lett. 96, 101104 (2010).
[CrossRef]

Zhao, G.

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

D. S. Kim and D. S. Citrin, Appl. Phys. Lett. 88, 161117(2006).
[CrossRef]

J. K. Wahlstrand, H. Zhang, and S. T. Cundiff, Appl. Phys. Lett. 96, 101104 (2010).
[CrossRef]

J. Appl. Phys. (1)

D. S. Kim and D. S. Citrin, J. Appl. Phys. 101, 053105 (2007).
[CrossRef]

J. Phys. Chem. Solids (1)

R. A. Forman, D. E. Aspnes, and M. Cardona, J. Phys. Chem. Solids 31, 227 (1970). See the appendix.
[CrossRef]

Opt. Lett. (1)

Rep. Prog. Phys. (1)

K. Reimann, Rep. Prog. Phys. 70, 1597 (2007).
[CrossRef]

Rev. Sci. Instrum. (2)

G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
[CrossRef]

D. A. Turton, G. H. Welsh, J. J. Carey, G. D. Reid, G. S. Beddard, and K. Wynne, Rev. Sci. Instrum. 77, 083111 (2006).
[CrossRef]

Other (1)

We have produced a higher bias amplitude of ∼400V at ∼44MHz, as described in .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Radio-frequency pulsed THz generation. (a) Experimental apparatus: BP, bandpass filter; LP, low-pass filter; PD, photodetector; WP, Wollaston prism; PS, power splitter; DDS, direct digital synthesis circuit. (b) Typical THz trace (inset, THz spectrum).

Fig. 2
Fig. 2

Peak THz field measured in the experiment. (a) Dependence on optical power for various excitation geometries. Filled circles: large spot, rf technique; empty circles: small spot, rf technique; filled triangles: large spot, dc technique; empty triangles: small spot, dc technique. (b) Dependence on the bias voltage—rf technique.

Fig. 3
Fig. 3

Dependence on the position of the spot for a focus of 8 μm ; shadow region corresponds to gold electrodes. Short dash, rf-insulated high optical power ( 150 mW ); long dash, rf-insulated low optical power ( 15 mW ); solid line, dc direct low optical power ( 15 mW ).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) V ( t ) I ( t ) ,

Metrics