Abstract

The speed of image processing is limited by image acquisition circuitry. While optical pattern recognition tech niques can reduce the computational burden on digital image processing, their image correlation rates are typically low due to the use of spatial optical elements. Here we report a method that overcomes this limitation and enables fast real-time analog image recognition at a record correlation rate of 36.7MHz—1000 times higher rates than conventional methods. This technique seamlessly performs image acquisition, correlation, and signal integration all optically in the time domain before analog-to-digital conversion by virtue of optical space-to-time mapping.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed flow microscopy using compressed sensing with ultrafast laser pulses

Bryan T. Bosworth, Jasper R. Stroud, Dung N. Tran, Trac D. Tran, Sang Chin, and Mark A. Foster
Opt. Express 23(8) 10521-10532 (2015)

Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition

Qiang Guo, Hongwei Chen, Zhiliang Weng, Minghua Chen, Sigang Yang, and Shizhong Xie
Opt. Express 23(23) 29639-29646 (2015)

Image recognition with the discrete rectangular-wave transform

O. K. Ersoy and D. Y. Kim
J. Opt. Soc. Am. A 5(1) 5-18 (1988)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription