Abstract

We numerically demonstrate that properly designed plasmonic covers can be used to enhance the performance of near-field scanning optical microscopy (NSOM) systems based on the employment of apertureless metallic tip probes. The covering material, exhibiting a near-zero value of the real permittivity at the working frequency, is designed in such a way to dramatically reduce the undesired scattering due to the strongly plasmonic behavior of the tip. Though the light scattering by the tip end is necessary for the correct operation of NSOMs, the additional scattering due to the whole probe affects the signal-to-noise ratio and thus the resolution of the acquired image. By covering the whole probe but not the very tip, we show that unwanted scattering can be effectively reduced. A realistic setup, working at mid-IR frequencies and employing silicon carbide covers, has been designed and simulated to confirm the effectiveness of the proposed approach.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Dunn, Chem. Rev. 99, 2891 (1999).
    [CrossRef]
  2. V. Sandoghdar and J. Mlynek, J. Opt. A Pure Appl. Opt. 1, 523 (1999).
    [CrossRef]
  3. A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
    [CrossRef] [PubMed]
  5. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007).
    [CrossRef]
  6. V. M. Shalaev, Science 322, 384 (2008).
    [CrossRef] [PubMed]
  7. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, Phys. Rev. Lett. 102, 213901 (2009).
    [CrossRef] [PubMed]
  8. G. W. Milton and N. A. Nicorovici, Proc. R. Soc. A 462, 3027 (2006).
    [CrossRef]
  9. S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Phys. Rev. Lett. 103, 103905 (2009).
    [CrossRef] [PubMed]
  10. A. Alù and N. Engheta, Phys. Rev. Lett. 102, 233901 (2009).
    [CrossRef] [PubMed]
  11. W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 127 (1959).
    [CrossRef]
  12. S. M. Rytov, Sov. Phys. JETP 2, 466 (1955).
  13. B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  14. F. Bilotti, S. Tricarico, and L. Vegni, IEEE Trans. Nanotechnol. 9, 55 (2010).
    [CrossRef]
  15. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  17. CST Studio Suite 2009, Computer Simulation Technology, http://www.cst.com.
  18. S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, Phys. Rev. E 81, 026602 (2010).
    [CrossRef]

2010

F. Bilotti, S. Tricarico, and L. Vegni, IEEE Trans. Nanotechnol. 9, 55 (2010).
[CrossRef]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, Phys. Rev. E 81, 026602 (2010).
[CrossRef]

2009

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, Phys. Rev. Lett. 102, 233901 (2009).
[CrossRef] [PubMed]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

2008

V. M. Shalaev, Science 322, 384 (2008).
[CrossRef] [PubMed]

2007

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007).
[CrossRef]

2006

G. W. Milton and N. A. Nicorovici, Proc. R. Soc. A 462, 3027 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

2005

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

1999

R. C. Dunn, Chem. Rev. 99, 2891 (1999).
[CrossRef]

V. Sandoghdar and J. Mlynek, J. Opt. A Pure Appl. Opt. 1, 523 (1999).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1959

W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

1955

S. M. Rytov, Sov. Phys. JETP 2, 466 (1955).

Alitalo, P.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef] [PubMed]

Alù, A.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, Phys. Rev. E 81, 026602 (2010).
[CrossRef]

A. Alù and N. Engheta, Phys. Rev. Lett. 102, 233901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Bilotti, F.

F. Bilotti, S. Tricarico, and L. Vegni, IEEE Trans. Nanotechnol. 9, 55 (2010).
[CrossRef]

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, Phys. Rev. E 81, 026602 (2010).
[CrossRef]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Dunn, R. C.

R. C. Dunn, Chem. Rev. 99, 2891 (1999).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, Phys. Rev. Lett. 102, 233901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kildishev, A. V.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007).
[CrossRef]

Kleinman, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

Luukkonen, O.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef] [PubMed]

Milton, G. W.

G. W. Milton and N. A. Nicorovici, Proc. R. Soc. A 462, 3027 (2006).
[CrossRef]

Mlynek, J.

V. Sandoghdar and J. Mlynek, J. Opt. A Pure Appl. Opt. 1, 523 (1999).
[CrossRef]

Nicorovici, N. A.

G. W. Milton and N. A. Nicorovici, Proc. R. Soc. A 462, 3027 (2006).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Rytov, S. M.

S. M. Rytov, Sov. Phys. JETP 2, 466 (1955).

Sandoghdar, V.

V. Sandoghdar and J. Mlynek, J. Opt. A Pure Appl. Opt. 1, 523 (1999).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

V. M. Shalaev, Science 322, 384 (2008).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007).
[CrossRef]

Simovski, C.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

Smolyaninova, V. N.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

Spitzer, W. G.

W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

Tretyakov, S.

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef] [PubMed]

Tricarico, S.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, Phys. Rev. E 81, 026602 (2010).
[CrossRef]

F. Bilotti, S. Tricarico, and L. Vegni, IEEE Trans. Nanotechnol. 9, 55 (2010).
[CrossRef]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Vegni, L.

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, Phys. Rev. E 81, 026602 (2010).
[CrossRef]

F. Bilotti, S. Tricarico, and L. Vegni, IEEE Trans. Nanotechnol. 9, 55 (2010).
[CrossRef]

Walsh, D.

W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Chem. Rev.

R. C. Dunn, Chem. Rev. 99, 2891 (1999).
[CrossRef]

IEEE Trans. Nanotechnol.

F. Bilotti, S. Tricarico, and L. Vegni, IEEE Trans. Nanotechnol. 9, 55 (2010).
[CrossRef]

J. Opt. A Pure Appl. Opt.

V. Sandoghdar and J. Mlynek, J. Opt. A Pure Appl. Opt. 1, 523 (1999).
[CrossRef]

Nat. Photon.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007).
[CrossRef]

Phys. Rev.

W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 127 (1959).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Phys. Rev. E

S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, Phys. Rev. E 81, 026602 (2010).
[CrossRef]

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Phys. Rev. Lett.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Phys. Rev. Lett. 103, 103905 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, Phys. Rev. Lett. 102, 233901 (2009).
[CrossRef] [PubMed]

Proc. R. Soc. A

G. W. Milton and N. A. Nicorovici, Proc. R. Soc. A 462, 3027 (2006).
[CrossRef]

Science

V. M. Shalaev, Science 322, 384 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Sov. Phys. JETP

S. M. Rytov, Sov. Phys. JETP 2, 466 (1955).

Other

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

CST Studio Suite 2009, Computer Simulation Technology, http://www.cst.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Operation of (a) a regular apertureless NSOM tip and (b) an NSOM tip partially covered by a material exhibiting a near-zero value of the real permittivity.

Fig. 2
Fig. 2

Geometrical sketch of (a) a regular apertureless gold NSOM tip and (b) a gold NSOM tip covered by a material exhibiting near-zero permittivity value at the desired wavelength. The bottom end of the hemisphere describing the very tip of the probe is placed at the origin of the Cartesian reference system. In such a reference system, the points indicated in the figure are represented as P 0 ( 0 , 150 , 0 ) , P 1 y z ( 0 , 55 , 200 ) , P 2 y z ( 0 , 325 , 250 ) , P 3 y z ( 0 , 1025 , 300 ) , P 1 x y ( 200 , 55 , 0 ) , P 2 x y ( 250 , 325 , 0 ) , and P 3 x y ( 300 , 1025 , 0 ) .

Fig. 3
Fig. 3

Amplitudes of the total ( incident + scattered ) electric field components at the reference points P 0 , P 1 , P 2 , and P 3 , reported in Fig. 2 in the case of (a), (b) a regular apertureless gold NSOM tip and (c), (d) a covered tip as a function of the wavelength. The structure is illuminated in both cases by a uniform plane wave with unit amplitude directed along the x axis and with the electric field polarized along the y axis.

Fig. 4
Fig. 4

Electric field amplitude ( [ | E x | 2 + | E y | 2 + | E z | 2 ] 1 / 2 ) distribution on the y x plane due to a unit-amplitude uniform plane wave directed along the x axis illuminating (a) a regular apertureless gold NSOM tip and (b) a covered gold NSOM tip. The field amplitude is plotted at the design frequency of 10.3 μm .

Metrics