Abstract

Our aim is to transpose the polarization control by mechanical stress, usually applied to single-mode fibers, to the (TM01,TE01,HE21ev,HE21od) annular mode family. Nevertheless, the quasi-degeneracy of these four modes makes the situation more complex than with the fundamental mode HE11. We propose a simple device based on periodic perturbation and mode coupling to produce the radially polarized TM01 mode or at least one of the four modes at the extremity of an arbitrarily long fiber, the conversion to TM01 mode being achievable by classical crystalline plates.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]
  2. T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
    [CrossRef]
  3. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  4. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, Opt. Lett. 9, 177 (1984).
    [CrossRef] [PubMed]
  5. K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, Opt. Spectrosc. 93, 588 (2002).
    [CrossRef]
  6. D. McGloin, N. B. Simpson, and M. J. Padgett, Appl. Opt. 37, 469 (1998).
    [CrossRef]
  7. C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A Pure Appl. Opt. 10, 095007 (2008).
    [CrossRef]
  8. C. N. Alexeyev, B. A. Lapin, and M. A. Yavorsky, J. Opt. Soc. Am. B 24, 2666 (2007).
    [CrossRef]
  9. S. J. Garth, IEE Proc. J 134, 221 (1987).
  10. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Opt. Lett. 5, 273 (1980).
    [CrossRef] [PubMed]
  11. S. C. Rashleigh and R. Ulrich, Opt. Lett. 5, 354 (1980).
    [CrossRef] [PubMed]
  12. D. Kalaidji, M. Spajer, N. Marthouret, and T. Grosjean, Opt. Lett. 34, 1780 (2009).
    [CrossRef] [PubMed]
  13. S. Ramachandran, S. Golowitch, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, Opt. Lett. 30, 2864 (2005).
    [CrossRef] [PubMed]

2009 (2)

2008 (1)

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A Pure Appl. Opt. 10, 095007 (2008).
[CrossRef]

2007 (1)

2005 (2)

2002 (1)

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, Opt. Spectrosc. 93, 588 (2002).
[CrossRef]

1998 (1)

1987 (1)

S. J. Garth, IEE Proc. J 134, 221 (1987).

1984 (1)

1980 (2)

Alekseev, K. N.

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, Opt. Spectrosc. 93, 588 (2002).
[CrossRef]

Alexeyev, C. N.

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A Pure Appl. Opt. 10, 095007 (2008).
[CrossRef]

C. N. Alexeyev, B. A. Lapin, and M. A. Yavorsky, J. Opt. Soc. Am. B 24, 2666 (2007).
[CrossRef]

Brooks, J. L.

Courjon, D.

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

Dimarcello, F. V.

Eickhoff, W.

Fadeeva, T. A.

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, Opt. Spectrosc. 93, 588 (2002).
[CrossRef]

Fleming, J.

Garth, S. J.

S. J. Garth, IEE Proc. J 134, 221 (1987).

Ghalmi, S.

Golowitch, S.

Grosjean, T.

Kalaidji, D.

Lapin, B. A.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Marthouret, N.

McGloin, D.

Monberg, E.

Padgett, M. J.

Ramachandran, S.

Rashleigh, S. C.

Sabac, A.

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

Shaw, H. J.

Simpson, N. B.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Spajer, M.

Ulrich, R.

Volyar, A. V.

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A Pure Appl. Opt. 10, 095007 (2008).
[CrossRef]

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, Opt. Spectrosc. 93, 588 (2002).
[CrossRef]

Wisk, P.

Yan, M. F.

Yavorsky, M. A.

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A Pure Appl. Opt. 10, 095007 (2008).
[CrossRef]

C. N. Alexeyev, B. A. Lapin, and M. A. Yavorsky, J. Opt. Soc. Am. B 24, 2666 (2007).
[CrossRef]

Youngquist, R. C.

Zhan, Q.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

IEE Proc. J (1)

S. J. Garth, IEE Proc. J 134, 221 (1987).

J. Opt. A Pure Appl. Opt. (1)

C. N. Alexeyev, A. V. Volyar, and M. A. Yavorsky, J. Opt. A Pure Appl. Opt. 10, 095007 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

Opt. Lett. (5)

Opt. Spectrosc. (1)

K. N. Alekseev, A. V. Volyar, and T. A. Fadeeva, Opt. Spectrosc. 93, 588 (2002).
[CrossRef]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Injection and coupling device: (a) the oblong coiling that induces the periodic stress replaces (b) the usual series of ridges.

Fig. 2
Fig. 2

Intermodal coupling: (a) normalized power of HE 21 ev and TM 01 versus coiling length for R = 20 mm , Λ = 177.6 mm , and two values of the birefringence δ n ; (b) minimum of | ( HE 21 ev ) | 2 and | ( TM 01 ) | 2 versus δ n .

Fig. 3
Fig. 3

Mode pattern versus analyzer rotation: (a)–(h) eight analyzer positions, (i) without analyzer, (j) power transmitted by the analyzer, (k) azimuthal variation of intensity along the inner circle of (e) and (h).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| ( Ψ 1 ) ( Ψ 2 ) ( Ψ 3 ) ( Ψ 4 ) | = 1 2 | cos Θ 1 sin Θ 1 0 0 sin Θ 1 cos Θ 1 0 0 0 0 sin Θ 3 cos Θ 3 0 0 cos Θ 3 sin Θ 3 | | ( HE 21 od ) ( TE 01 ) ( HE 21 ev ) ( TM 01 ) | .
θ i = π 4 π / 4 θ i 0 θ i = 0 HE 21 od Ψ 1 = e x cos θ 1 sin ϕ + e y sin θ 1 cos ϕ LP 11 x od TE 01 Ψ 2 = e x sin θ 1 sin ϕ + e y cos θ 1 cos ϕ LP 11 y ev HE 21 ev Ψ 3 = e x cos θ 3 cos ϕ e y sin θ 3 sin ϕ LP 11 x ev TM 01 Ψ 4 = e x sin θ 3 cos ϕ + e y cos θ 3 sin ϕ LP 11 y od ,
A = 2 Δ r 0 2 u w 2 V 2 J 1 ( u ) J 0 ( u ) , B = 4 Δ r 0 2 u w 2 V 2 J 1 ( u ) J 2 ( u ) ,
E 1 = n 0 k 2 δ n ,
tan ( 2 θ 1 ) = A 2 E 1 , tan ( 2 θ 3 ) = A + 2 B 2 E 1 .
δ n = 0.135 ( b 2 / R 2 ) + 0.492 ( b / R ) ϵ z ,
M R M L = | e j β 1 d 0 0 0 0 e j β 2 d 0 0 0 0 e j β 3 d 0 0 0 0 e j β 4 d | .
Δ β 1 = 1 4 β 1 [ A ( A 2 + 4 E 1 2 ) 1 / 2 ] , Δ β 2 = 1 4 β 2 [ A + ( A 2 + 4 E 1 2 ) 1 / 2 ] , Δ β 3 = 1 4 β 3 [ A + 2 B + ( ( A 2 B ) 2 + 4 E 1 2 ) 1 / 2 ] , Δ β 4 = 1 4 β 4 [ A + 2 B ( ( A 2 B ) 2 + 4 E 1 2 ) 1 / 2 ] ,
T = M L M 1 M R M , T n = ( M L M 1 M R M ) n .

Metrics