Abstract

This work presents a small-signal analysis for investigating the transmission performance of optical orthogonal frequency division multiplexing signals with a directly modulated DFB laser (DML). The analysis shows the positive chirp of DMLs can intensify power fading after transmission with positive dispersion and provide power gain instead with negative dispersion. The power of subcarrier-to-subcarrier intermixing interference after square-law direct detection, however, is independent on the sign of dispersion.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, Opt. Express 17, 20484 (2009).
    [Crossref] [PubMed]
  2. J. Armstrong, J. Lightwave Technol. 27, 189 (2009).
    [Crossref]
  3. D. F. Hewitt and E. Skafidas, in ECOC 2006 (2006), paper We3.P.154.
  4. W.-R. Peng, X. Wu, V. R. Arbab, K.-M. Feng, B. Shamee, L. C. Christen, J.-Y. Yang, A. E. Willner, and S. Chi, J. Lightwave Technol. 27, 1332 (2009).
    [Crossref]
  5. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, R. Vodhane1, and J. Nakano, in Optical Fiber Communication Conference and Exhibit (OFC2001) (2001), paper TuU6-1.
  6. X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
    [Crossref]
  7. J. Wang and K. Petermann, J. Lightwave Technol. 10, 96 (1992).
    [Crossref]
  8. U. Gliese, S. Ngrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
    [Crossref]
  9. M. Osinski and J. Buus, IEEE J. Quantum Electron. 23, 9 (1987).
    [Crossref]
  10. W. K. Marshall, B. Crosignani, and A. Yariv, Opt. Lett. 25, 165 (2000).
    [Crossref]
  11. L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature Amplitude Modulation (Wiley, 2000).

2010 (1)

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
[Crossref]

2009 (3)

2000 (1)

1996 (1)

U. Gliese, S. Ngrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[Crossref]

1992 (1)

J. Wang and K. Petermann, J. Lightwave Technol. 10, 96 (1992).
[Crossref]

1987 (1)

M. Osinski and J. Buus, IEEE J. Quantum Electron. 23, 9 (1987).
[Crossref]

Arbab, V. R.

Armstrong, J.

Boskovic, A.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, R. Vodhane1, and J. Nakano, in Optical Fiber Communication Conference and Exhibit (OFC2001) (2001), paper TuU6-1.

Buus, J.

M. Osinski and J. Buus, IEEE J. Quantum Electron. 23, 9 (1987).
[Crossref]

Chi, S.

Christen, L. C.

Crosignani, B.

Feng, K.-M.

Giddings, R. P.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
[Crossref]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, Opt. Express 17, 20484 (2009).
[Crossref] [PubMed]

Gliese, U.

U. Gliese, S. Ngrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[Crossref]

Hallock, B.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, R. Vodhane1, and J. Nakano, in Optical Fiber Communication Conference and Exhibit (OFC2001) (2001), paper TuU6-1.

Hanzo, L.

L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature Amplitude Modulation (Wiley, 2000).

Hesse, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, R. Vodhane1, and J. Nakano, in Optical Fiber Communication Conference and Exhibit (OFC2001) (2001), paper TuU6-1.

Hewitt, D. F.

D. F. Hewitt and E. Skafidas, in ECOC 2006 (2006), paper We3.P.154.

Hong, Y. H.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
[Crossref]

Hugues-Salas, E.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
[Crossref]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, Opt. Express 17, 20484 (2009).
[Crossref] [PubMed]

Jin, X. Q.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
[Crossref]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, Opt. Express 17, 20484 (2009).
[Crossref] [PubMed]

Keller, T.

L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature Amplitude Modulation (Wiley, 2000).

Marshall, W. K.

Nakano, J.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, R. Vodhane1, and J. Nakano, in Optical Fiber Communication Conference and Exhibit (OFC2001) (2001), paper TuU6-1.

Ngrskov, S.

U. Gliese, S. Ngrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[Crossref]

Nielsen, T. N.

U. Gliese, S. Ngrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[Crossref]

Osinski, M.

M. Osinski and J. Buus, IEEE J. Quantum Electron. 23, 9 (1987).
[Crossref]

Peng, W.-R.

Petermann, K.

J. Wang and K. Petermann, J. Lightwave Technol. 10, 96 (1992).
[Crossref]

Roudas, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, R. Vodhane1, and J. Nakano, in Optical Fiber Communication Conference and Exhibit (OFC2001) (2001), paper TuU6-1.

Shamee, B.

Skafidas, E.

D. F. Hewitt and E. Skafidas, in ECOC 2006 (2006), paper We3.P.154.

Tang, J. M.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
[Crossref]

X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, Opt. Express 17, 20484 (2009).
[Crossref] [PubMed]

Tomkos, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, R. Vodhane1, and J. Nakano, in Optical Fiber Communication Conference and Exhibit (OFC2001) (2001), paper TuU6-1.

Vodhane1, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, R. Vodhane1, and J. Nakano, in Optical Fiber Communication Conference and Exhibit (OFC2001) (2001), paper TuU6-1.

Wang, J.

J. Wang and K. Petermann, J. Lightwave Technol. 10, 96 (1992).
[Crossref]

Webb, W.

L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature Amplitude Modulation (Wiley, 2000).

Wei, J. L.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
[Crossref]

Willner, A. E.

Wu, X.

Yang, J.-Y.

Yariv, A.

Zheng, X.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Osinski and J. Buus, IEEE J. Quantum Electron. 23, 9 (1987).
[Crossref]

IEEE Photon. J. (1)

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, IEEE Photon. J. 2, 532 (2010).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

U. Gliese, S. Ngrskov, and T. N. Nielsen, IEEE Trans. Microwave Theory Tech. 44, 1716 (1996).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Lett. (1)

Other (3)

L. Hanzo, W. Webb, and T. Keller, Single- and Multi-Carrier Quadrature Amplitude Modulation (Wiley, 2000).

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, R. Vodhane1, and J. Nakano, in Optical Fiber Communication Conference and Exhibit (OFC2001) (2001), paper TuU6-1.

D. F. Hewitt and E. Skafidas, in ECOC 2006 (2006), paper We3.P.154.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Relative power (in decibels) of (a) the subcarrier and (b) the normalized SSII at 5 GHz .

Fig. 2
Fig. 2

SNR of each subcarrier after transmission.

Fig. 3
Fig. 3

Optical SNR penalties as functions of dispersion.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 + I th + n = 1 N i n cos ( n ω t + θ n ) ,
d ϕ d t = α 2 P d P d t ϕ = α 2 ( ln P ln P 0 ) ,
E 1 j φ + ( 1 j α ) n = 1 N x n cos ( n ω t + θ n ) 1 + α 2 2 X 2 ,
x ˜ n e j θ ˜ n = 1 4 x n / 2 2 + 1 2 m = n / 2 + 1 N x m x | m n | e j ( θ m θ | m n | ) ,
E D = 1 j φ D + 1 + α 2 n = 1 N x n e j ( n 2 θ D θ α ) cos ( n ω t + θ n ) ( 1 + α 2 ) n = 1 2 N x ˜ n e j n 2 θ D cos ( n ω t + θ ˜ n ) ,
| E D | 2 1 + 2 I { φ D } + 2 1 + α 2 n = 1 N x n cos ( n 2 θ D θ α ) cos ( n ω t + θ n ) + 2 ( 1 + α 2 ) n = 1 2 N x ˜ d , n cos ( n ω t + θ ˜ d , n ) 2 ( 1 + α 2 ) n = 1 2 N x ˜ n cos ( n 2 θ D ) cos ( n ω t + θ ˜ n ) ,
x ˜ d , n e j θ ˜ d , n = 1 4 x n / 2 2 + 1 2 m = n / 2 + 1 N x m x | m n | e j ( θ m θ | m n | ) cos ( ( 2 m n n 2 ) θ D ) .
( 1 + α 2 ) 2 x ˜ t , n 2 n N p x 2 8 ( 1 + α 2 ) 2 ( N n 2 ) × [ 1 + 2 cos 2 ( n 2 θ D ) + sinc ( 4 n θ D ( N n 2 ) ) 4 cos ( n 2 θ D ) sinc ( 2 n θ D ( N n 2 ) ) ] ,
Φ n ω × 4 S ( n ω ) sin 2 ( n 2 θ D ) = 4 Δ f n 2 ω sin 2 ( n 2 θ D ) .
SNR t , n = ( 1 + α 2 ) cos 2 ( n 2 θ D θ α ) p x ρ 1 p x + Φ n + ( 1 + α 2 ) 2 x ˜ t , n 2
x ˜ t , n 2 | n odd = | m = ( n + 1 ) / 2 N x m x | m n | 2 e j ( θ m θ | m n | ) [ cos ( ( 2 m n n 2 ) θ D ) cos ( n 2 θ D ) ] | 2 .
x ˜ t , n 2 | n odd = p x 2 4 k = 1 / 2 N n / 2 [ cos ( 2 k n θ D ) cos ( n 2 θ D ) ] 2
x ˜ t , n 2 | n odd = p x 2 8 [ ( N n 2 + 1 2 ) ( 2 + cos ( 2 n 2 θ D ) ) + sin ( 2 n θ D ( 2 N n + 1 ) ) sin ( 2 n θ D ) 4 cos ( n 2 θ D ) sin ( n θ D ( 2 N n + 1 ) ) sin ( n θ D ) ] .
x ˜ t , n 2 | n even = x ˜ t , n 2 | n odd p x 2 8 ( 1 + cos 2 ( n 2 θ D ) ) + x n 4 16 ( 1 cos ( n 2 θ D ) ) 2 .

Metrics