Abstract

We developed a photoacoustic imaging system that has real-time imaging capability with optical resolution. The imaging system is capable of scanning at 20Hz over a 9mm range and up to 40Hz over a 1mm scanning range. A focused laser beam provides a lateral resolution of 3.4μm as measured in an optically nonscattering medium. Flows of micrometer-sized carbon particles or whole blood in a silicone tube and individual red blood cells (RBCs) in mouse ear capillaries were also imaged in real time, demonstrating the capability to image highly dynamic processes in vivo at a micrometer-scale resolution.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
    [CrossRef] [PubMed]
  2. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
    [CrossRef] [PubMed]
  3. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, Opt. Express 13, 89 (2005).
    [CrossRef] [PubMed]
  4. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
    [CrossRef] [PubMed]
  5. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
    [CrossRef] [PubMed]
  6. L. V. Wang, Nat. Photon. 3, 503 (2009).
    [CrossRef]
  7. T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, Opt. Express 17, 22041 (2009).
    [CrossRef] [PubMed]
  8. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, Opt. Lett. 34, 1771 (2009).
    [CrossRef] [PubMed]

2009 (3)

2008 (1)

2006 (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Copland, J. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

de Mul, F. F. M.

Eghtedari, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Harrison, T.

Hu, S.

Jiao, S.

Kolkman, R. G. M.

Kotov, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Lu, H.

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Maslov, K.

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

Mathewson, K.

Motamedi, M.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Oraevsky, A. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Puliafito, C. A.

Ranasinghesagara, J. C.

Siphanto, R. I.

Steenbergen, W.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Thumma, K. K.

van Adrichem, L. N. A.

van Leeuwen, T. G.

van Neck, J. W.

Walsh, A.

Wang, L. V.

L. V. Wang, Nat. Photon. 3, 503 (2009).
[CrossRef]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, Opt. Lett. 33, 929 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Xie, Z.

Zemp, R. J.

Zhang, H. F.

Mol. Imaging Biol. (1)

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, Nat. Biotechnol. 24, 848 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, Nat. Biotechnol. 21, 803 (2003).
[CrossRef] [PubMed]

Nat. Photon. (1)

L. V. Wang, Nat. Photon. 3, 503 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Supplementary Material (1)

» Media 1: AVI (4155 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of voice-coil-driven fast- scanning OR-PAM.

Fig. 2
Fig. 2

(A) Lateral resolution test on a sharp edge. ESF, edge spread function; LSF, line spread function. (B) Test of penetration depth by imaging a needle obliquely inserted into biological tissue. (C) In vivo maximum amplitude projection (MAP) image of mouse ear vasculature. (D) Close-up of the region enclosed by the dashed box in (C); arrows denote capillaries. NPA, normalized photoacoustic amplitude.

Fig. 3
Fig. 3

(A) Schematic of the experiment setup for carbon particle flow measurement. (B) Representative B-scan flow image across the dashed-box area in (A). (C) Distribution of imaged carbon particles along the x axis at one z axis position versus time. (D) Frequency spectrum of data in (C) obtained with two-dimensional Fourier transformation. (E) Imaged parabolic flow speed along the z axis. NPA, normalized photoacoustic amplitude; NSD, normalized spectrum density.

Fig. 4
Fig. 4

(A) B-scan image of whole blood flowing in a tube. (B) MAP along the z axis of the B-scan image versus time. (C) Two-dimensional frequency spectrum of the data in (B). (D) Measured flow speed versus the preset values. NPA, normalized photoacoustic amplitude; NSD, normalized spectrum density.

Fig. 5
Fig. 5

(A) In vivo B-scan of single RBCs flowing in a mouse ear capillary. (B) MAP along the z axis of the B-scan image versus time (Media 1). (C) Two-dimensional frequency spectrum of the data in (B). NPA, normalized photoacoustic amplitude; NSD: normalized spectrum density.

Metrics