Abstract

We present experimental and numerical results showing the generation and breakup of the Peregrine soliton in standard telecommunications fiber. The impact of nonideal initial conditions is studied through direct cutback measurements of the longitudinal evolution of the emerging soliton dynamics and is shown to be associated with the splitting of the Peregrine soliton into two subpulses, with each subpulse itself exhibiting Peregrine soliton characteristics. Experimental results are in good agreement with simulations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007).
    [CrossRef] [PubMed]
  2. J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
    [CrossRef]
  3. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009).
    [CrossRef] [PubMed]
  4. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
    [CrossRef]
  5. K. B. Dysthe and K. Trulsen, Phys. Scripta T82, 48 (1999).
    [CrossRef]
  6. N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).
    [CrossRef]
  7. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
    [CrossRef]
  8. Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987).
    [CrossRef]
  9. S. Wabnitz and N. Akhmediev, Opt. Commun. 283, 1152 (2010).
    [CrossRef]
  10. V. I. Shrira and V. V. Geogjaev, J. Eng. Math. 67, 11 (2009).
    [CrossRef]

2010 (3)

J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
[CrossRef]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

S. Wabnitz and N. Akhmediev, Opt. Commun. 283, 1152 (2010).
[CrossRef]

2009 (3)

V. I. Shrira and V. V. Geogjaev, J. Eng. Math. 67, 11 (2009).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009).
[CrossRef] [PubMed]

N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).
[CrossRef]

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007).
[CrossRef] [PubMed]

1999 (1)

K. B. Dysthe and K. Trulsen, Phys. Scripta T82, 48 (1999).
[CrossRef]

1987 (1)

Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987).
[CrossRef]

1986 (1)

N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
[CrossRef]

Agafontsev, D.

J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
[CrossRef]

Akhmediev, N.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

S. Wabnitz and N. Akhmediev, Opt. Commun. 283, 1152 (2010).
[CrossRef]

N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009).
[CrossRef] [PubMed]

N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
[CrossRef]

Ankiewicz, A.

N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).
[CrossRef]

Dias, F.

J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
[CrossRef]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009).
[CrossRef] [PubMed]

Dudley, J. M.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009).
[CrossRef] [PubMed]

Dysthe, K. B.

K. B. Dysthe and K. Trulsen, Phys. Scripta T82, 48 (1999).
[CrossRef]

Fatome, J.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

Finot, C.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
[CrossRef]

Garnier, J.

J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
[CrossRef]

Genty, G.

J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
[CrossRef]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009).
[CrossRef] [PubMed]

Geogjaev, V. V.

V. I. Shrira and V. V. Geogjaev, J. Eng. Math. 67, 11 (2009).
[CrossRef]

Hasegawa, A.

Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987).
[CrossRef]

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007).
[CrossRef] [PubMed]

Kibler, B.

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009).
[CrossRef] [PubMed]

Kodama, Y.

Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987).
[CrossRef]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007).
[CrossRef] [PubMed]

Korneev, V. I.

N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
[CrossRef]

Millot, G.

J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
[CrossRef]

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007).
[CrossRef] [PubMed]

Shrira, V. I.

V. I. Shrira and V. V. Geogjaev, J. Eng. Math. 67, 11 (2009).
[CrossRef]

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007).
[CrossRef] [PubMed]

Taki, M.

N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).
[CrossRef]

Trulsen, K.

K. B. Dysthe and K. Trulsen, Phys. Scripta T82, 48 (1999).
[CrossRef]

Wabnitz, S.

S. Wabnitz and N. Akhmediev, Opt. Commun. 283, 1152 (2010).
[CrossRef]

Eur. J. Phys. Spec. Top. (1)

J. M. Dudley, C. Finot, G. Millot, J. Garnier, G. Genty, D. Agafontsev, and F. Dias, Eur. J. Phys. Spec. Top. 185, 125 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987).
[CrossRef]

J. Eng. Math. (1)

V. I. Shrira and V. V. Geogjaev, J. Eng. Math. 67, 11 (2009).
[CrossRef]

Nat. Phys. (1)

B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, Nat. Phys. 6, 790 (2010).
[CrossRef]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Wabnitz and N. Akhmediev, Opt. Commun. 283, 1152 (2010).
[CrossRef]

Opt. Express (1)

Phys. Lett. A (1)

N. Akhmediev, A. Ankiewicz, and M. Taki, Phys. Lett. A 373, 675 (2009).
[CrossRef]

Phys. Scripta (1)

K. B. Dysthe and K. Trulsen, Phys. Scripta T82, 48 (1999).
[CrossRef]

Theor. Math. Phys. (1)

N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69, 1089 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. PM, phase modulator; IM, intensity modulator; OSO, optical sampling oscilloscope; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

False-color maps showing compressed peak power as a function of distance and power at δ mod = 0.3 from: (a) experiment and (b) simulation. (c) Comparison of the temporal intensity profile measured for three values of δ mod at corresponding optimum compression distance with P 0 = 0.8 W (see details in the text). The ideal analytic PS is also shown in the black curve. Corresponding numerical simulations of δ mod = 0.3 yield results that are indistinguishable from the experimental data. (d) Corresponding spectrum (solid curve) at maximum compression for δ mod = 0.3 compared with numerical results (open circles).

Fig. 3
Fig. 3

Evolution with distance of (a), (b) temporal and (c), (d) spectral intensities comparing experiment and simulation as shown. Here δ mod = 0.3 and P 0 = 0.80 W . (e) OSO signal observed at 8.4 km with δ mod = 0.3 . Experiment (dashed curve) is compared with simulations (solid curve) and the analytical form of PS for each subpulse (open circles). (f) Corresponding spectrum with solid curve compared with numerical spectrum (open circles).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( z , T ) = P 0 ( 1 4 a ) cosh ( b z / L NL ) + i b sinh ( b z / L NL ) + 2 a cos ( ω mod T ) 2 a cos ( ω mod T ) cosh ( b z / L NL ) .

Metrics