Abstract

We investigate numerically and experimentally the possibility of development of a cavity-based probe for near-field optical microscopy systems based on a fiber Fabry–Perot interferometer with a subwavelength protruding aperture. It was shown that the probe provides a spatial resolution of no worse than λ/37 for λ=1550nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl and W. D. M. Lanz, Appl. Phys. Lett. 44, 651(1984).
    [CrossRef]
  2. F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
    [PubMed]
  3. L. K. Kapkiai, D. Moore-Nichols, J. Carnell, and J. R. Krogmeier, Appl. Phys. Lett. 84, 3750 (2004).
    [CrossRef]
  4. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett. 93, 200801 (2004).
    [CrossRef] [PubMed]
  5. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
    [CrossRef] [PubMed]
  6. K. Sendur, C. Peng, and W. Challener, Phys. Rev. Lett. 94, 043901 (2005).
    [CrossRef] [PubMed]
  7. J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 073111 (2010).
    [CrossRef]
  8. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
    [CrossRef]
  9. T. Yatsui, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 73, 2090 (1998).
    [CrossRef]
  10. Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011).
    [CrossRef]
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).
  12. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
    [CrossRef]
  13. T. Pangaribuan, K. Yamada, Sh. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992).
    [CrossRef]

2011

Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011).
[CrossRef]

2010

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 073111 (2010).
[CrossRef]

2005

K. Sendur, C. Peng, and W. Challener, Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

2004

L. K. Kapkiai, D. Moore-Nichols, J. Carnell, and J. R. Krogmeier, Appl. Phys. Lett. 84, 3750 (2004).
[CrossRef]

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

2003

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

2001

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

2000

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

1998

T. Yatsui, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 73, 2090 (1998).
[CrossRef]

1992

T. Pangaribuan, K. Yamada, Sh. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992).
[CrossRef]

1984

D. W. Pohl and W. D. M. Lanz, Appl. Phys. Lett. 44, 651(1984).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
[CrossRef]

Aoyagi, Y.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

Bezverbniy, A. V.

Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011).
[CrossRef]

Cambi, A.

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

Carnell, J.

L. K. Kapkiai, D. Moore-Nichols, J. Carnell, and J. R. Krogmeier, Appl. Phys. Lett. 84, 3750 (2004).
[CrossRef]

Challener, W.

K. Sendur, C. Peng, and W. Challener, Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Cheng, Y.

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 073111 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
[CrossRef]

de Bakker, B.

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

De Lange, F.

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Felderer, K.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Figdor, C. G.

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

Frey, H. G.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Garcia-Parajo, M.

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

Gibby, A.

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 073111 (2010).
[CrossRef]

Guckenberger, R.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).

Hansen, P.

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 073111 (2010).
[CrossRef]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Hesselink, L.

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 073111 (2010).
[CrossRef]

Huijbens, R.

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

Jiang, Sh.

T. Pangaribuan, K. Yamada, Sh. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
[CrossRef]

Kapkiai, L. K.

L. K. Kapkiai, D. Moore-Nichols, J. Carnell, and J. R. Krogmeier, Appl. Phys. Lett. 84, 3750 (2004).
[CrossRef]

Kourogi, M.

T. Yatsui, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 73, 2090 (1998).
[CrossRef]

Krogmeier, J. R.

L. K. Kapkiai, D. Moore-Nichols, J. Carnell, and J. R. Krogmeier, Appl. Phys. Lett. 84, 3750 (2004).
[CrossRef]

Kuchmizhak, A. A.

Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011).
[CrossRef]

Kulchin, Yu. N.

Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011).
[CrossRef]

Lanz, W. D. M.

D. W. Pohl and W. D. M. Lanz, Appl. Phys. Lett. 44, 651(1984).
[CrossRef]

Leen, J. B.

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 073111 (2010).
[CrossRef]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Matsuda, K.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

Mihara, M.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

Moore-Nichols, D.

L. K. Kapkiai, D. Moore-Nichols, J. Carnell, and J. R. Krogmeier, Appl. Phys. Lett. 84, 3750 (2004).
[CrossRef]

Nair, S. V.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

Nepomnyashchii, A. V.

Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011).
[CrossRef]

Nomura, S.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

Ohsawa, H.

T. Pangaribuan, K. Yamada, Sh. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992).
[CrossRef]

Ohtsu, M.

T. Yatsui, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 73, 2090 (1998).
[CrossRef]

T. Pangaribuan, K. Yamada, Sh. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992).
[CrossRef]

Pangaribuan, T.

T. Pangaribuan, K. Yamada, Sh. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992).
[CrossRef]

Peng, C.

K. Sendur, C. Peng, and W. Challener, Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

D. W. Pohl and W. D. M. Lanz, Appl. Phys. Lett. 44, 651(1984).
[CrossRef]

Pustovalov, E. V.

Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011).
[CrossRef]

Rensen, W.

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

Saiki, T.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

Sendur, K.

K. Sendur, C. Peng, and W. Challener, Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).

Takagahara, T.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

van Hulst, N.

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

Vitrik, O. B.

Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011).
[CrossRef]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Witt, S.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Yamada, K.

T. Pangaribuan, K. Yamada, Sh. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992).
[CrossRef]

Yatsui, T.

T. Yatsui, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 73, 2090 (1998).
[CrossRef]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Appl. Phys. Lett.

L. K. Kapkiai, D. Moore-Nichols, J. Carnell, and J. R. Krogmeier, Appl. Phys. Lett. 84, 3750 (2004).
[CrossRef]

D. W. Pohl and W. D. M. Lanz, Appl. Phys. Lett. 44, 651(1984).
[CrossRef]

J. B. Leen, P. Hansen, Y. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 073111 (2010).
[CrossRef]

T. Yatsui, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 73, 2090 (1998).
[CrossRef]

J. Cell. Sci.

F. De Lange, A. Cambi, R. Huijbens, B. de Bakker, W. Rensen, M. Garcia-Parajo, N. van Hulst, and C. G. Figdor, J. Cell. Sci. 114, 4153 (2001).
[PubMed]

J. Chem. Phys.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, J. Chem. Phys. 112, 7761 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

T. Pangaribuan, K. Yamada, Sh. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
[CrossRef]

Phys. Rev. Lett.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. V. Nair, and T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

K. Sendur, C. Peng, and W. Challener, Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Quantum Electron.

Yu. N. Kulchin, O. B. Vitrik, A. V. Bezverbniy, E. V. Pustovalov, A. A. Kuchmizhak, and A. V. Nepomnyashchii, Quantum Electron. 41, 249 (2011).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Probe based on the fiber FPI with a subwavelength aperture protruding directly toward the external sample. (a) Distribution of a TE-field component E z in FPI for an RW. E z distribution near the outside aperture is shown in logarithmic scale. (b) Evanescent protruding light source formed on the fiber output end face: I, electron micrograph of the tapered part obtained on the output end face by chemical etching method; II, AFM topographical crosscut of the obtained structure; III and IV, electron micrographs of apertures with diameters D = 100 nm and D = 50 nm , correspondingly; both are produced at the apex of the tapered structure.

Fig. 2
Fig. 2

Properties of the fiber FPI with the subwavelength aperture protruding toward the sample. (a) Q factor as a function of the taper part height h cone obtained for simulated (solid curve) and experimental (dashed curve) cases. (b) Relative change in RW ε as a function h / L measured for the case of apertures of D = 50 nm (1) and D = 100 nm (2).

Fig. 3
Fig. 3

Schematic of the experimental setup.

Fig. 4
Fig. 4

Experimentally investigated properties of the FPI with subwavelength aperture protruding toward the sample. (a) Relative shift of the RW of a FPI, ε, as a function of h/L for the aperture diameters D = 50 nm (1) and D = 100 nm (2). (b) Cantilever profile retrieved by an RW shift in the probe (blue curve) method compared to the real AFM profile (red curve).

Metrics