Abstract

We present transmission increased fused silica lenses produced by using self-organized antireflective structures for which we developed an efficient manufacturing process. The spectral transmission measured over the whole lens aperture shows a significant transmission enhancement of up to 3.5% in the UV range. Local measurements on the lens’s surface reveal a strongly reduced reflection of below 0.1% for 300nm wavelength, which is homogeneous over the whole lens. Further, the lenses show a broadband spectral antireflection behavior. For 600nm wavelength the reflection was measured at about 1%.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Smakula, “Verfahren zur Erhöhung der Lichtdurchlässigkeit optischer Teile durch Erniedrigung des Brechungsexponenten an den Grenzflächen dieser optischen Teile,” German patent DE685767 (November 1, 1935).
  2. C. G. Bernhard and W. H. Miller, Acta Physiologica Scandinavica 56, 385 (1962).
    [CrossRef] [PubMed]
  3. P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
    [CrossRef]
  4. Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999).
    [CrossRef]
  5. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
    [CrossRef]
  6. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008).
    [CrossRef] [PubMed]
  7. H. Fang, Y. Wu, J. Zhao, and J. Zhu, Nanotechnology 17, 3768 (2006).
    [CrossRef]
  8. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, Opt. Express 15, 14793 (2007).
    [CrossRef] [PubMed]
  9. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, Opt. Express 15, 13108 (2007).
    [CrossRef] [PubMed]
  10. M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, Proc. SPIE 6883, 68830N (2008).
    [CrossRef]

2008 (2)

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008).
[CrossRef] [PubMed]

M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, Proc. SPIE 6883, 68830N (2008).
[CrossRef]

2007 (2)

2006 (1)

H. Fang, Y. Wu, J. Zhao, and J. Zhu, Nanotechnology 17, 3768 (2006).
[CrossRef]

1999 (2)

Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422 (1999).
[CrossRef]

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

1973 (1)

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

1962 (1)

C. G. Bernhard and W. H. Miller, Acta Physiologica Scandinavica 56, 385 (1962).
[CrossRef] [PubMed]

Bernhard, C. G.

C. G. Bernhard and W. H. Miller, Acta Physiologica Scandinavica 56, 385 (1962).
[CrossRef] [PubMed]

Bläsi, B.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Brunner, R.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008).
[CrossRef] [PubMed]

Chen, H. L.

Chuang, S. Y.

Clapham, P. B.

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Döll, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Dreibholz, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Fang, H.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, Nanotechnology 17, 3768 (2006).
[CrossRef]

Fuchs, H.-J.

M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, Proc. SPIE 6883, 68830N (2008).
[CrossRef]

Glaubitt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Gombert, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Hane, K.

Heinzel, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Helgert, M.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008).
[CrossRef] [PubMed]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Kaiser, N.

Kanamori, Y.

Kley, E.-B.

M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, Proc. SPIE 6883, 68830N (2008).
[CrossRef]

Leitel, R.

Lin, C. H.

Lin, Y. H.

Lohmüller, T.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008).
[CrossRef] [PubMed]

Miller, W. H.

C. G. Bernhard and W. H. Miller, Acta Physiologica Scandinavica 56, 385 (1962).
[CrossRef] [PubMed]

Munzert, P.

Rose, K.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Sasaki, M.

Schulz, U.

Schulze, M.

M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, Proc. SPIE 6883, 68830N (2008).
[CrossRef]

Smakula, A.

A. Smakula, “Verfahren zur Erhöhung der Lichtdurchlässigkeit optischer Teile durch Erniedrigung des Brechungsexponenten an den Grenzflächen dieser optischen Teile,” German patent DE685767 (November 1, 1935).

Spatz, J. P.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008).
[CrossRef] [PubMed]

Sporn, D.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Sundermann, M.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008).
[CrossRef] [PubMed]

Tünnermann, A.

Wendling, I.

Wittwer, V.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Wu, Y.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, Nanotechnology 17, 3768 (2006).
[CrossRef]

Zhao, J.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, Nanotechnology 17, 3768 (2006).
[CrossRef]

Zhu, J.

H. Fang, Y. Wu, J. Zhao, and J. Zhu, Nanotechnology 17, 3768 (2006).
[CrossRef]

Acta Physiologica Scandinavica (1)

C. G. Bernhard and W. H. Miller, Acta Physiologica Scandinavica 56, 385 (1962).
[CrossRef] [PubMed]

Nano Lett. (1)

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, Nano Lett. 8, 1429 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

H. Fang, Y. Wu, J. Zhao, and J. Zhu, Nanotechnology 17, 3768 (2006).
[CrossRef]

Nature (1)

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

M. Schulze, H.-J. Fuchs, E.-B. Kley, and A. Tünnermann, Proc. SPIE 6883, 68830N (2008).
[CrossRef]

Thin Solid Films (1)

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351, 73 (1999).
[CrossRef]

Other (1)

A. Smakula, “Verfahren zur Erhöhung der Lichtdurchlässigkeit optischer Teile durch Erniedrigung des Brechungsexponenten an den Grenzflächen dieser optischen Teile,” German patent DE685767 (November 1, 1935).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmission spectra of four different ARS in fused silica (backside reflection neglected) compared to a non-antireflective surface. The maximum in transmission can be controlled by adjusting the etching parameters during the self-masked etching. We can fabricate ARS for the UV (dotted blue line), the VIS (dot-and-dashed green line), the NIR (dashed yellow line), and the IR range (solid red line) of the spectrum. Note the OH absorption at about 1380 nm .

Fig. 2
Fig. 2

SEM images show the ARS on the apex (a) and at the edge of the lens (b) (note the respective drawings). The stochastic distribution can be recognized.

Fig. 3
Fig. 3

Image of the wavefront after etching of the lens. The picture displays the changes in the surface profile of 100 nm at most. The value zero is arbitrarily chosen.

Fig. 4
Fig. 4

Relative transmission of a fused silica lens with ARS compared to an untreated lens (solid line). The dashed line shows the maximum theoretical value, the dotted line represents a lens without antireflective properties.

Fig. 5
Fig. 5

Local reflection on the lens surface at three different wavelengths (solid blue line: 300 nm , dotted green line: 450 nm , and dashed red line: 600 nm ). For this setup, the azimuth angle was increased from perpendicular to 42 ° (see sketch). Note the very low reflection at our design wavelength of 300 nm .

Fig. 6
Fig. 6

Local reflection measurement on the lens showing the homogenity of the antireflective properties for (a)  300 nm and (b)  600 nm wavelength. Here, the azimuth angle was kept constant and the lens was rotated 360 ° along the polar axis (see sketch).

Metrics